// Z3DMath.h: interface for the Z3DMath class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_Z3DMATH_H__05758061_E110_11D4_AD2B_0000E8EB4C69__INCLUDED_) #define AFX_Z3DMATH_H__05758061_E110_11D4_AD2B_0000E8EB4C69__INCLUDED_ #if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000 #include #include "misc.h" #include "vector.h" #include "quaternion.h" #include "matrix.h" #include // dummy.. ÀӽÿëÀÓ. extern vector3 g_vecDummy; extern quaternion g_quatDummy; namespace z3d { inline const vector3 MatrixGetLoc( const matrix& m ) { return vector3(m._41, m._42, m._43); } void MatrixTranslation(matrix& result_m, const vector3 &loc); void MatrixCameraLookAt(matrix& result_m, const vector3& loc, const vector3& lookAt, const vector3& inUp ); void MatrixAxisAngle(matrix& result_m, const vector3& inaxis,float angle); void MatrixRotationQuaternion(matrix& result, const quaternion& q ); void MatrixRotationQuaternion(D3DMATRIX& result, const quaternion& q ); //void D3DMATRIXRotationQuaternion(D3DMATRIX& m, const quaternion& q ); void VectorMultiplyMatrix( vector3& result_v, const vector3 &v, const matrix &m ); inline void VectorLerp( vector3& result, vector3& from, vector3& to, float factor ) { result.x = (to.x - from.x)*factor + from.x; result.y = (to.y - from.y)*factor + from.y; result.z = (to.z - from.z)*factor + from.z; } inline void MatrixToD3DMATRIX( D3DMATRIX& dest, const matrix& src ) { memcpy( &(dest._11), &(src._11), sizeof(float) * 16 ); } // // perform quaternion rotation on vector // inline void VectorRotate( vector3& result, const vector3& v, const quaternion& q ) { float xx, yy, zz, xy, yz, zx, wx, wy, wz, vx, vy, vz; xx = q.x*q.x; yy = q.y*q.y; zz = q.z*q.z; xy = q.x*q.y; yz = q.z*q.y; zx = q.z*q.x; wx = q.w*q.x; wy = q.w*q.y; wz = q.w*q.z; vx = v.x; vy = v.y; vz = v.z; result.x = vx + 2*(-vx*(yy+zz) + vy*(xy-wz) + vz*(zx+wy) ); result.y = vy + 2*( vx*(xy+wz) + -vy*(xx+zz) + vz*(yz-wx) ); result.z = vz + 2*( vx*(zx-wy) + vy*(yz+wx) + -vz*(xx+yy) ); } inline void QuaternionSlerp( quaternion& result, quaternion from, quaternion to, float factor ) { if( from.w < 0 ) from = -from; if( to.w < 0 ) to = -to; float fCosTheta = from.x*to.x + from.y*to.y + from.z*to.z + from.w*to.w; //float fSign = 1.0f; if( fCosTheta < 0.0f ) { fCosTheta = -fCosTheta; to = -to; //fSign = -1.0f; } float fInvFactor = 1.0f - factor; if( 1.0f - fCosTheta > 0.001f ) { float fTheta = acosf(fCosTheta); factor = sinf( factor*fTheta ) / sinf(fTheta); fInvFactor = sinf( fInvFactor*fTheta ) / sinf(fTheta); } result.x = fInvFactor*from.x + factor*to.x; result.y = fInvFactor*from.y + factor*to.y; result.z = fInvFactor*from.z + factor*to.z; result.w = fInvFactor*from.w + factor*to.w; } inline void QuaternionRotationMatrix(quaternion& result_q, const matrix& m) { float f = sqrtf(m._11 + m._22 + m._33 + m._44) * 2; result_q.x = (m._32 - m._23) / f; result_q.y = (m._13 - m._31) / f; result_q.z = (m._21 - m._12) / f; result_q.w = f / 4; } inline void QuaternionAxisAngle( quaternion& result_q, float x, float y, float z, float a ) { a /= 2.0; float n = sqrtf(x*x + y*y + z*z); n = max( FLOAT_EPSILON, n ); result_q.w = cosf(a); result_q.x = x*sinf(a)/n; result_q.y = y*sinf(a)/n; result_q.z = z*sinf(a)/n; } inline void VectorSetValue( vector3& v, float x, float y, float z ) { v.x = x; v.y = y; v.z = z; } inline void QuaternionSetValue( quaternion& q, float x, float y, float z, float w ) { q.x = x; q.y = y; q.z = z; q.w = w; } } #endif // !defined(AFX_Z3DMATH_H__05758061_E110_11D4_AD2B_0000E8EB4C69__INCLUDED_)