Files
Client/Library/dxx8/samples/Multimedia/DirectPlay/Maze/MazeCommon/Maze.cpp
LGram16 e067522598 Initial commit: ROW Client source code
Game client codebase including:
- CharacterActionControl: Character and creature management
- GlobalScript: Network, items, skills, quests, utilities
- RYLClient: Main client application with GUI and event handlers
- Engine: 3D rendering engine (RYLGL)
- MemoryManager: Custom memory allocation
- Library: Third-party dependencies (DirectX, boost, etc.)
- Tools: Development utilities

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-29 16:24:34 +09:00

396 lines
12 KiB
C++

//----------------------------------------------------------------------------
// File: maze.cpp
//
// Desc: see main.cpp
//
// Copyright (c) 1999-2001 Microsoft Corp. All rights reserved.
//-----------------------------------------------------------------------------
#define STRICT
#define D3D_OVERLOADS
#include <windows.h>
#include <d3dx.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <dplay8.h>
#include <dpaddr.h>
#include <dxerr8.h>
#include "DXUtil.h"
#include "Maze.h"
#include "MazeServer.h"
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
CMaze::CMaze()
{
m_dwWidth = m_dwHeight = m_dwSeed = m_dwSize = 0;
m_pMaze = NULL;
m_dwMaxView = 15;
}
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
CMaze::~CMaze()
{
if( m_pMaze != NULL )
DXTRACE( TEXT("Warning: Destructing CMaze object without calling Empty()\n") );
Empty();
}
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
HRESULT CMaze::Init( DWORD dwWidth, DWORD dwHeight, DWORD dwSeed )
{
HRESULT hr;
CellNode* pCells = NULL;
CellNode* pCellNode = NULL;
DWORD dwNumWalls;
WallNode* pWalls = NULL;
WallNode* pWallNode = NULL;
WallNode tempWall;
DWORD dwIndex;
DWORD i;
m_Random.Reset( dwSeed );
// Empty out any old data
Empty();
// Store parameters and compute number of cells in the maze
m_dwWidth = dwWidth;
m_dwHeight = dwHeight;
m_dwSeed = dwSeed;
m_dwSize = m_dwWidth * m_dwHeight;
// Must be non-zero
if( m_dwSize == 0 )
{
hr = E_INVALIDARG;
DXTRACE_ERR( TEXT("Maze height and width need must be greater than 0"), E_INVALIDARG );
goto LFail;
}
// Validate maze size
if( m_dwWidth > SERVER_MAX_WIDTH || m_dwHeight > SERVER_MAX_HEIGHT )
{
hr = E_INVALIDARG;
DXTRACE_ERR( TEXT("Maze height and width must be less than 128"), E_INVALIDARG );
goto LFail;
}
if( (m_dwWidth % LOCK_GRID_SIZE) != 0 || (m_dwHeight % LOCK_GRID_SIZE) != 0 )
{
hr = E_INVALIDARG;
DXTRACE_ERR( TEXT("Maze height and width need to be divisable by 16"), E_INVALIDARG );
goto LFail;
}
// Allocate maze, and initially make all walls solid
m_pMaze = new BYTE[m_dwSize];
if( m_pMaze == NULL )
{
hr = E_OUTOFMEMORY;
DXTRACE_ERR( TEXT("new"), hr );
goto LFail;
}
memset( m_pMaze, MAZE_WALL_ALL, m_dwSize );
// Okay, now we're going to generate the maze. We use Kruskal's algorithm, which
// works by walking through the list of walls in a random order, removing a wall
// if it would connect two previously (path-)disconnected cells. This guarantees
// a fully connected maze (i.e. you can reach any cell from any other).
// Allocate and initialize temporary cell list
pCells = new CellNode[m_dwSize];
if( pCells == NULL )
{
hr = E_OUTOFMEMORY;
DXTRACE_ERR( TEXT("new"), hr );
goto LFail;
}
pCellNode = pCells;
for( i = 0; i < m_dwSize; i++ )
{
pCellNode->pNext = NULL;
pCellNode->pPartition = pCellNode;
pCellNode++;
}
// Create list of walls
dwNumWalls = ((m_dwWidth-1)*m_dwHeight)+((m_dwHeight-1)*m_dwWidth);
pWalls = new WallNode[dwNumWalls];
if( pWalls == NULL )
{
hr = E_OUTOFMEMORY;
DXTRACE_ERR( TEXT("new"), hr );
goto LFail;
}
pWallNode = pWalls;
for( i = 1; i < m_dwWidth; i++ )
{
for( DWORD j = 0; j < m_dwHeight; j++, pWallNode++ )
{
pWallNode->dwX = i;
pWallNode->dwY = j;
pWallNode->dwType = MAZE_WALL_WEST;
}
}
for( i = 0; i < m_dwWidth; i++ )
{
for( DWORD j = 1; j < m_dwHeight; j++, pWallNode++ )
{
pWallNode->dwX = i;
pWallNode->dwY = j;
pWallNode->dwType = MAZE_WALL_NORTH;
}
}
// Randomly permute the wall list
for( i = dwNumWalls-1; i > 0; i-- )
{
dwIndex = m_Random.Get(i);
tempWall = pWalls[dwIndex];
pWalls[dwIndex] = pWalls[i];
pWalls[i] = tempWall;
}
// Walk through all the walls
pWallNode = pWalls;
for( i = 0; i < dwNumWalls; i++, pWallNode++ )
{
// Determine the cells either side of the wall
DWORD dwCellA = pWallNode->dwX + (pWallNode->dwY * m_dwWidth);
DWORD dwCellB = dwCellA;
if( pWallNode->dwType == MAZE_WALL_NORTH )
dwCellB -= m_dwWidth;
else
dwCellB--;
// Are they already connected (partitions equal)?
CellNode* pCellA = pCells+dwCellA;
CellNode* pCellB = pCells+dwCellB;
if( pCellA->pPartition != pCellB->pPartition )
{
// Nope, so let's take out that wall. First, connect the partition lists
while ( pCellA->pNext )
pCellA = pCellA->pNext;
pCellB = pCellB->pPartition;
pCellA->pNext = pCellB;
while ( pCellB )
{
pCellB->pPartition = pCellA->pPartition;
pCellB = pCellB->pNext;
}
// Now remove the walls in our maze array
if( pWallNode->dwType == MAZE_WALL_NORTH )
{
m_pMaze[dwCellA] &= ~MAZE_WALL_NORTH;
m_pMaze[dwCellB] &= ~MAZE_WALL_SOUTH;
}
else
{
m_pMaze[dwCellA] &= ~MAZE_WALL_WEST;
m_pMaze[dwCellB] &= ~MAZE_WALL_EAST;
}
}
}
// Free temporary wall and cell lists
delete[] pWalls;
delete[] pCells;
return S_OK;
LFail:
SAFE_DELETE_ARRAY( pCells );
SAFE_DELETE_ARRAY( pWalls );
SAFE_DELETE_ARRAY( m_pMaze );
return hr;
}
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
void CMaze::Empty()
{
if( m_pMaze != NULL )
SAFE_DELETE_ARRAY( m_pMaze );
m_dwWidth = m_dwHeight = m_dwSeed = m_dwSize = 0;
}
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
DWORD CMaze::GetVisibleCells( const D3DXVECTOR2& pos, const D3DXVECTOR2& dir ,
float fov, MazeCellRef* plist, DWORD maxlist )
{
// Check we have a maze, and that we were passed reasonable parameters
if( m_pMaze == NULL || plist == NULL || maxlist == 0 )
return 0;
// Check bounds of given viewpoint, must be inside maze
if( pos.x < 0.0f || pos.y < 0.0f ||
pos.x >= float(m_dwWidth) || pos.y >= float(m_dwHeight) )
return 0;
// State data for the algorithm
VisState state;
// Figure out which cell the viewpoint is in
state.dwPosX = DWORD(pos.x);
state.dwPosY = DWORD(pos.y);
state.vPos = pos;
// Compute view boundaries
float c = float(cos(fov*0.5f));
float s = float(sin(fov*0.5f));
D3DXVECTOR2 left,right;
left.x = (dir.x*c)+(dir.y*s);
left.y = (dir.y*c)-(dir.x*s);
right.x = (dir.x*c)-(dir.y*s);
right.y = (dir.y*c)+(dir.x*s);
// Store view direction (for near plane clip)
state.vDir = dir;
// Figure out boundary of area we're prepared to look at (view cutoff)
state.dwMinX = (state.dwPosX > m_dwMaxView) ? state.dwPosX - m_dwMaxView : 0;
state.dwMaxX = ((state.dwPosX + m_dwMaxView) > m_dwWidth) ? m_dwWidth : state.dwPosX + m_dwMaxView;
state.dwMinY = (state.dwPosY > m_dwMaxView) ? state.dwPosY - m_dwMaxView : 0;
state.dwMaxY = ((state.dwPosY + m_dwMaxView) > m_dwHeight) ? m_dwHeight : state.dwPosY + m_dwMaxView;
state.dwArrayPitch = state.dwMaxX-state.dwMinX+1;
// Allocate a temporary buffer which we'll use to mark visited cells
DWORD array_size = state.dwArrayPitch * (state.dwMaxY-state.dwMinY+1);
state.pArray = (BYTE*)_alloca( array_size );
ZeroMemory( state.pArray, array_size );
state.ppVisList = &plist;
state.dwMaxList = maxlist;
state.dwListLen = 0;
// Recurse through cells
RecurseCheckCellVis( state, state.dwPosX, state.dwPosY, left, right );
return state.dwListLen;
}
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
void CMaze::RecurseCheckCellVis( VisState& state, DWORD x, DWORD y,
D3DXVECTOR2 left, D3DXVECTOR2 right )
{
// Fall out if we've overrun list length
if( state.dwListLen >= state.dwMaxList )
return;
// If cell is outside the maximum view bounds, then it's not visible
if( x < state.dwMinX || x > state.dwMaxX ||
y < state.dwMinY || y > state.dwMaxY )
return;
// If cell is already marked, then we don't visit it either
if( state.pArray[x-state.dwMinX+((y-state.dwMinY)*state.dwArrayPitch)] )
return;
// Mark cell as visited
state.pArray[x-state.dwMinX+((y-state.dwMinY)*state.dwArrayPitch)] = 1;
// Compute visibility flags
D3DXVECTOR2 offset;
offset.x = float(x)-state.vPos.x;
offset.y = float(y)-state.vPos.y;
BYTE flags[4];
flags[0] = ComputeVisFlags( state.vDir, left, right, offset );
offset.x += 1.0f;
flags[1] = ComputeVisFlags( state.vDir, left, right, offset );
offset.y += 1.0f;
flags[2] = ComputeVisFlags( state.vDir, left, right, offset );
offset.x -= 1.0f;
flags[3] = ComputeVisFlags( state.vDir, left, right, offset );
offset.y -= 1.0f;
// If there is an edge which clips all points, then the cell isn't in frustrum
if( flags[0]&flags[1]&flags[2]&flags[3] )
return;
// Cell is visible, so add it to list
(*state.ppVisList)->x = x;
(*state.ppVisList)->y = y;
(*state.ppVisList)++;
state.dwListLen++;
// Recurse into adjoining cells. Can move into an adjacent cell only if
// there is a 'portal' (i.e. hole in the wall) that is not clipped and
// that lies on the correct side of the viewport.
BYTE cell = GetCell(x,y);
D3DXVECTOR2 se = offset + D3DXVECTOR2(1,1);
if( !(cell & MAZE_WALL_NORTH) && offset.y < 0 && !(flags[0]&flags[1]) )
RecurseCheckCellVis( state, x, y-1, left, right );
if( !(cell & MAZE_WALL_SOUTH) && se.y > 0 && !(flags[2]&flags[3]) )
RecurseCheckCellVis( state, x, y+1, left, right );
if( !(cell & MAZE_WALL_WEST) && offset.x < 0 && !(flags[3]&flags[0]) )
RecurseCheckCellVis( state, x-1, y, left, right );
if( !(cell & MAZE_WALL_EAST) && se.x > 0 && !(flags[1]&flags[2]) )
RecurseCheckCellVis( state, x+1, y, left, right );
return;
}
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
BYTE CMaze::ComputeVisFlags( const D3DXVECTOR2& dir, const D3DXVECTOR2& left,
const D3DXVECTOR2& right, const D3DXVECTOR2& offset )
{
BYTE flag = (D3DXVec2Dot(&offset, &dir) >= 0) ? 0 : 1;
if( D3DXVec2CCW(&offset,&left) > 0 )
flag |= 2;
if( D3DXVec2CCW(&offset,&right) < 0 )
flag |= 4;
return flag;
}