Files
V2GDecoderC/DotNet/EXI/BitStreamExact.cs
ChiKyun Kim c6dc6735fa feat: Complete cross-platform build system and folder reorganization
- Reorganize project structure: Port/ → DotNet/, VC/, C++/
- Add comprehensive cross-platform build automation
  - Windows: build_all.bat, build.bat files for all components
  - Linux/macOS: build_all.sh, build.sh files for all components
- Update all build scripts with correct folder paths
- Create test automation scripts (test_all.bat/sh)
- Update documentation to reflect new structure
- Maintain 100% roundtrip accuracy for test5.exi (pure EXI)
- Support both Windows MSBuild and Linux GCC compilation

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-12 09:36:38 +09:00

643 lines
25 KiB
C#

/*
* Copyright (C) 2007-2024 C# Port
* Original Copyright (C) 2007-2018 Siemens AG
*
* Exact BitStream implementation - byte-compatible with OpenV2G C implementation
* Matches BitInputStream.c and BitOutputStream.c exactly
*/
using System;
namespace V2GDecoderNet.EXI
{
/// <summary>
/// Exact bit input stream implementation matching OpenV2G BitInputStream.c
/// </summary>
public class BitInputStreamExact
{
private readonly BitstreamExact _stream;
public BitInputStreamExact(byte[] buffer)
{
_stream = new BitstreamExact(buffer);
}
public BitInputStreamExact(BitstreamExact stream)
{
_stream = stream ?? throw new ArgumentNullException(nameof(stream));
}
/// <summary>
/// Read specified number of bits - exact implementation of readBits()
/// </summary>
public int ReadBits(int numBits)
{
if (numBits < 1 || numBits > 32)
throw new ArgumentException("Number of bits must be between 1 and 32", nameof(numBits));
int val = 0;
while (numBits > 0)
{
// If buffer is empty, read next byte
if (_stream.Capacity == 0)
{
if (_stream.Position >= _stream.Size)
return -1; // End of stream
_stream.Buffer = _stream.Data[_stream.Position++];
_stream.Capacity = EXIConstantsExact.BITS_IN_BYTE;
}
// Calculate how many bits to read from current buffer
int bitsToRead = Math.Min(numBits, _stream.Capacity);
// Extract bits from buffer (from MSB side)
int mask = (0xFF >> (EXIConstantsExact.BITS_IN_BYTE - bitsToRead));
int bits = (_stream.Buffer >> (_stream.Capacity - bitsToRead)) & mask;
// Add to result value
val = (val << bitsToRead) | bits;
// Update state
_stream.Capacity -= (byte)bitsToRead;
numBits -= bitsToRead;
}
return val;
}
/// <summary>
/// Read single bit - exact implementation
/// </summary>
public int ReadBit()
{
return ReadBits(1);
}
/// <summary>
/// Read N-bit unsigned integer - exact implementation of decodeNBitUnsignedInteger()
/// </summary>
public int ReadNBitUnsignedInteger(int numBits)
{
if (numBits == 0) return 0;
return ReadBits(numBits);
}
/// <summary>
/// Read variable length unsigned integer - exact implementation of decodeUnsignedInteger()
/// Uses 7-bit continuation encoding exactly like C implementation
/// </summary>
public long ReadUnsignedInteger()
{
const int MASK_7_BITS = 0x7F;
const int CONTINUATION_BIT = 0x80;
byte[] maskedOctets = new byte[8]; // Max 8 bytes for 64-bit value
int i = 0;
byte b;
// Read continuation bytes exactly like C implementation
do
{
int byteVal = ReadBits(8);
if (byteVal < 0) throw new InvalidOperationException("Unexpected end of stream");
b = (byte)byteVal;
maskedOctets[i++] = (byte)(b & MASK_7_BITS);
if (i >= maskedOctets.Length)
throw new InvalidOperationException("Variable length integer too long");
} while ((b & CONTINUATION_BIT) != 0);
// Assemble value from bytes (reverse order) - exact C algorithm
long value = 0;
for (int j = i - 1; j >= 0; j--)
{
value = (value << 7) | maskedOctets[j];
}
return value;
}
/// <summary>
/// Read variable length signed integer - exact implementation
/// </summary>
public long ReadInteger()
{
long magnitude = ReadUnsignedInteger();
// Check sign bit (LSB of magnitude)
bool isNegative = (magnitude & 1) != 0;
// Remove sign bit and adjust value
long value = magnitude >> 1;
return isNegative ? -(value + 1) : value;
}
/// <summary>
/// Read 16-bit unsigned integer - exact implementation of decodeUnsignedInteger16()
/// Uses VC2022 DecoderChannel.c algorithm exactly
/// VC2022 function name: decodeUnsignedInteger16
/// </summary>
public ushort ReadUnsignedInteger16()
{
// Console.Error.WriteLine($"🔬 [ReadUnsignedInteger16] Starting at pos={Position}, bit={BitPosition}");
uint mShift = 0;
ushort result = 0;
byte b;
int iterCount = 0;
do
{
// 1. Read the next octet (8 bits)
b = (byte)ReadBits(8);
// Console.Error.WriteLine($"🔬 [ReadUnsignedInteger16] Iter {iterCount}: read byte=0x{b:X2}, pos={Position}, bit={BitPosition}");
// 2. Multiply the value of the unsigned number represented by the 7
// least significant bits of the octet by the current multiplier and add the result to
// the current value
ushort addition = (ushort)((b & 127) << (int)mShift);
result = (ushort)(result + addition);
// Console.Error.WriteLine($"🔬 [ReadUnsignedInteger16] Iter {iterCount}: (b & 127)={b & 127}, mShift={mShift}, addition={addition}, result={result}");
// 3. Multiply the multiplier by 128
mShift += 7;
// 4. If the most significant bit of the octet was 1, go back to step 1
bool continues = (b >> 7) == 1;
// Console.Error.WriteLine($"🔬 [ReadUnsignedInteger16] Iter {iterCount}: MSB={(b >> 7)}, continues={continues}");
iterCount++;
} while ((b >> 7) == 1);
// Console.Error.WriteLine($"🔬 [ReadUnsignedInteger16] Final result={result}");
return result;
}
/// <summary>
/// Read 16-bit signed integer using C decodeInteger16 algorithm
/// First bit is sign bit: 0=positive, 1=negative
/// For negative: -(magnitude + 1)
/// </summary>
public short ReadInteger16()
{
// Read sign bit (1 bit)
bool isNegative = ReadBit() != 0;
// Read unsigned magnitude
uint magnitude = (uint)ReadUnsignedInteger();
if (isNegative)
{
return (short)(-(magnitude + 1));
}
else
{
return (short)magnitude;
}
}
public bool IsEndOfStream => _stream.Position >= _stream.Size && _stream.Capacity == 0;
public int Position => _stream.Position;
public int BitPosition => EXIConstantsExact.BITS_IN_BYTE - _stream.Capacity;
/// <summary>
/// Get remaining bytes from current position
/// </summary>
public byte[] GetRemainingBytes()
{
int remainingBits = _stream.Capacity;
int currentBytePos = Position;
if (remainingBits > 0)
{
// If there are remaining bits in current byte, we need to include it
currentBytePos--;
}
int remainingByteCount = _stream.Size - currentBytePos;
if (remainingByteCount <= 0) return new byte[0];
byte[] remaining = new byte[remainingByteCount];
Array.Copy(_stream.Data, currentBytePos, remaining, 0, remainingByteCount);
return remaining;
}
}
/// <summary>
/// Exact bit output stream implementation matching OpenV2G BitOutputStream.c
/// </summary>
public class BitOutputStreamExact
{
private readonly BitstreamExact _stream;
public BitOutputStreamExact(int capacity = EXIConstantsExact.BUFFER_SIZE)
{
_stream = new BitstreamExact(capacity);
}
public BitOutputStreamExact(BitstreamExact stream)
{
_stream = stream ?? throw new ArgumentNullException(nameof(stream));
}
/// <summary>
/// Write specified number of bits - EXACT implementation matching VC2022 writeBits()
/// Based on BitOutputStream.c lines 40-108 - BYTE FOR BYTE IDENTICAL
/// VC2022 function name: writeBits
/// </summary>
public void writeBits(int numBits, int val)
{
if (numBits < 1 || numBits > 32)
throw new ArgumentException("Number of bits must be between 1 and 32", nameof(numBits));
// Console.Error.WriteLine($"🔬 [writeBits] ENTRY: pos={_stream.Position}, nbits={numBits}, val={val:X}, capacity={_stream.Capacity}, buffer=0x{_stream.Buffer:X2}");
// VC2022 line 43: if (nbits <= stream->capacity)
if (numBits <= _stream.Capacity)
{
// Console.Error.WriteLine($"🔬 [writeBits] Using single-byte path (nbits <= capacity)");
// VC2022 line 45: stream->buffer = (uint8_t)(stream->buffer << (nbits)) | (uint8_t)(val & (uint32_t)(0xff >> (uint32_t)(BITS_IN_BYTE - nbits)));
uint mask = (uint)(0xFF >> (EXIConstantsExact.BITS_IN_BYTE - numBits));
// Console.Error.WriteLine($"🔬 [writeBits] mask=0x{mask:X2}");
if (_stream.Position >= 28 && _stream.Position <= 35 && _stream.Capacity == 1 && numBits == 1)
{
Console.Error.WriteLine($"🔍 [writeBits] LAST BIT: pos={_stream.Position}, cap={_stream.Capacity}, buf=0x{_stream.Buffer:X2}, val={val}, writing to LSB");
}
_stream.Buffer = (byte)((_stream.Buffer << numBits) | (val & mask));
// Console.Error.WriteLine($"🔬 [writeBits] new buffer=0x{_stream.Buffer:X2}");
// VC2022 line 46: stream->capacity = (uint8_t)(stream->capacity - nbits);
_stream.Capacity = (byte)(_stream.Capacity - numBits);
// Console.Error.WriteLine($"🔬 [writeBits] new capacity={_stream.Capacity}");
// VC2022 line 48: if (stream->capacity == 0)
if (_stream.Capacity == 0)
{
// Console.Error.WriteLine($"🔬 [writeBits] Flushing buffer 0x{_stream.Buffer:X2} to position {_stream.Position}");
// VC2022 line 53: stream->data[(*stream->pos)++] = stream->buffer;
if (_stream.Position >= _stream.Size)
throw new InvalidOperationException("Output buffer overflow");
_stream.Data[_stream.Position++] = _stream.Buffer;
// VC2022 line 61-62: stream->capacity = BITS_IN_BYTE; stream->buffer = 0;
_stream.Capacity = EXIConstantsExact.BITS_IN_BYTE;
_stream.Buffer = 0;
}
}
else
{
// VC2022 line 67-68: stream->buffer = (uint8_t)(stream->buffer << stream->capacity) | ( (uint8_t)(val >> (nbits - stream->capacity)) & (uint8_t)(0xff >> (BITS_IN_BYTE - stream->capacity)) );
if (_stream.Position >= 28 && _stream.Position <= 35)
{
Console.Error.WriteLine($"🔍 [writeBits] BOUNDARY: pos={_stream.Position}, cap={_stream.Capacity}, buf=0x{_stream.Buffer:X2}, val={val}, nbits={numBits}");
Console.Error.WriteLine($"🔍 [writeBits] shift_amount={numBits - _stream.Capacity}, val_shifted={(byte)(val >> (numBits - _stream.Capacity))}");
}
_stream.Buffer = (byte)((_stream.Buffer << _stream.Capacity) |
(((byte)(val >> (numBits - _stream.Capacity))) & (byte)(0xFF >> (EXIConstantsExact.BITS_IN_BYTE - _stream.Capacity))));
// VC2022 line 70: nbits = (nbits - stream->capacity);
numBits = numBits - _stream.Capacity;
// VC2022 line 75: stream->data[(*stream->pos)++] = stream->buffer;
if (_stream.Position >= _stream.Size)
throw new InvalidOperationException("Output buffer overflow");
if (_stream.Position >= 28 && _stream.Position <= 35)
Console.Error.WriteLine($"🔍 [writeBits] Writing byte 0x{_stream.Buffer:X2} to position {_stream.Position}");
_stream.Data[_stream.Position++] = _stream.Buffer;
// VC2022 line 83: stream->buffer = 0;
_stream.Buffer = 0;
// VC2022 line 86-92: while (errn == 0 && nbits >= BITS_IN_BYTE)
while (numBits >= EXIConstantsExact.BITS_IN_BYTE)
{
// VC2022 line 87: nbits = (nbits - BITS_IN_BYTE);
numBits = numBits - EXIConstantsExact.BITS_IN_BYTE;
// VC2022 line 92: stream->data[(*stream->pos)++] = (uint8_t)(val >> (nbits));
if (_stream.Position >= _stream.Size)
throw new InvalidOperationException("Output buffer overflow");
_stream.Data[_stream.Position++] = (byte)(val >> numBits);
}
// VC2022 line 103-104: stream->buffer = (uint8_t)val; stream->capacity = (uint8_t)(BITS_IN_BYTE - (nbits));
_stream.Buffer = (byte)val; // Note: the high bits will be shifted out during further filling
_stream.Capacity = (byte)(EXIConstantsExact.BITS_IN_BYTE - numBits);
}
}
/// <summary>
/// Write single bit - exact implementation
/// </summary>
public void WriteBit(int bit)
{
if (Position >= 28 && Position <= 35)
Console.Error.WriteLine($"🔍 [WriteBit] pos={Position}:{BitPosition}, bit={bit}");
writeBits(1, bit);
}
/// <summary>
/// Compatibility wrapper - keep C# naming for internal use
/// </summary>
public void WriteBits(int numBits, int val)
{
if (Position >= 28 && Position <= 45)
Console.Error.WriteLine($"🔍 [WriteBits] pos={Position}, writing {numBits} bits, val={val:X}");
writeBits(numBits, val);
if (Position >= 28 && Position <= 45)
Console.Error.WriteLine($"🔍 [WriteBits] pos after={Position}");
}
/// <summary>
/// Write N-bit unsigned integer - exact implementation of encodeNBitUnsignedInteger()
/// VC2022 function name: encodeNBitUnsignedInteger
/// </summary>
public void encodeNBitUnsignedInteger(int numBits, int val)
{
if (numBits > 0)
{
if (Position >= 28 && Position <= 35)
Console.Error.WriteLine($"🔍 [encodeNBit] pos={Position}:{BitPosition}, writing {numBits} bits, val={val}");
writeBits(numBits, val);
// Console.Error.WriteLine($"🔬 [encodeNBit] After write pos_after={Position}, buf=0x{BufferState:X2}, cap={CapacityState}");
}
}
/// <summary>
/// Compatibility wrapper - keep C# naming for internal use
/// </summary>
/// <summary>
/// Legacy C# style alias for backward compatibility
/// </summary>
public void WriteNBitUnsignedInteger(int numBits, int val) => encodeNBitUnsignedInteger(numBits, val);
/// <summary>
/// Compatibility wrapper - keep C# naming for internal use
/// </summary>
public void WriteUnsignedInteger16(ushort val) => encodeUnsignedInteger16(val);
/// <summary>
/// Helper method - exact implementation of numberOf7BitBlocksToRepresent()
/// </summary>
private byte NumberOf7BitBlocksToRepresent(ushort n)
{
if (n < 128) return 1;
if (n < 16384) return 2; // 128 * 128 = 16384
return 3;
}
/// <summary>
/// Number of 7-bit blocks needed to represent a value - exact VC2022 algorithm
/// </summary>
private static byte NumberOf7BitBlocksToRepresent(uint n)
{
/* 7 bits */
if (n < 128) {
return 1;
}
/* 14 bits */
else if (n < 16384) {
return 2;
}
/* 21 bits */
else if (n < 2097152) {
return 3;
}
/* 28 bits */
else if (n < 268435456) {
return 4;
}
/* 35 bits */
else {
/* int, 32 bits */
return 5;
}
}
/// <summary>
/// Encode unsigned integer using VC2022 encodeUnsignedInteger32 exact algorithm
/// </summary>
public void encodeUnsignedInteger32(uint n)
{
if (n < 128)
{
// Write byte as is
WriteBits(8, (byte)n);
}
else
{
byte n7BitBlocks = NumberOf7BitBlocksToRepresent(n);
switch (n7BitBlocks)
{
case 5:
WriteBits(8, (byte)(128 | n));
n = n >> 7;
goto case 4;
case 4:
WriteBits(8, (byte)(128 | n));
n = n >> 7;
goto case 3;
case 3:
WriteBits(8, (byte)(128 | n));
n = n >> 7;
goto case 2;
case 2:
WriteBits(8, (byte)(128 | n));
n = n >> 7;
goto case 1;
case 1:
// 0 .. 7 (last byte)
WriteBits(8, (byte)(0 | n));
break;
}
}
}
/// <summary>
/// Encode unsigned integer using VC2022 encodeUnsignedInteger16 exact algorithm
/// </summary>
public void encodeUnsignedInteger16(ushort n)
{
// if (n == 471) Console.Error.WriteLine($"🔍 [encodeUnsignedInteger16] Encoding 471, pos={Position}");
if (n < 128)
{
// Write byte as is
// if (n == 471) Console.Error.WriteLine($"🔍 [encodeUnsignedInteger16] 471 < 128, writing {n}");
WriteBits(8, (byte)n);
}
else
{
byte n7BitBlocks = NumberOf7BitBlocksToRepresent(n);
// if (n == 471) Console.Error.WriteLine($"🔍 [encodeUnsignedInteger16] 471 >= 128, n7BitBlocks={n7BitBlocks}");
switch (n7BitBlocks)
{
case 3:
// if (n == 471) Console.Error.WriteLine($"🔍 [encodeUnsignedInteger16] case 3: writing {(byte)(128 | n)} = {128 | n}");
WriteBits(8, (byte)(128 | n));
n = (ushort)(n >> 7);
goto case 2;
case 2:
// if (n == 471) Console.Error.WriteLine($"🔍 [encodeUnsignedInteger16] case 2: writing {(byte)(128 | n)} = {128 | n}");
WriteBits(8, (byte)(128 | n));
n = (ushort)(n >> 7);
// if (n == 3) Console.Error.WriteLine($"🔍 [encodeUnsignedInteger16] after >>7, n=3, going to case 1");
goto case 1;
case 1:
// 0 .. 7 (last byte)
// if (n == 3) Console.Error.WriteLine($"🔍 [encodeUnsignedInteger16] case 1: writing final {(byte)(0 | n)} = {0 | n}");
WriteBits(8, (byte)(0 | n));
break;
}
}
}
/// <summary>
/// Write variable length unsigned integer - exact implementation of encodeUnsignedInteger()
/// Uses 7-bit continuation encoding exactly like C implementation
/// </summary>
public void WriteUnsignedInteger(long val)
{
if (val < 0)
throw new ArgumentException("Value must be non-negative", nameof(val));
// Use VC2022 exact algorithm for 32-bit values
if (val <= uint.MaxValue)
{
encodeUnsignedInteger32((uint)val);
return;
}
const int MASK_7_BITS = 0x7F;
const int CONTINUATION_BIT = 0x80;
// Handle zero as special case
if (val == 0)
{
WriteBits(8, 0);
return;
}
// Split into 7-bit chunks with continuation bits - exact C algorithm
byte[] bytes = new byte[10]; // Max bytes needed for 64-bit value
int numBytes = 0;
while (val > 0)
{
byte chunk = (byte)(val & MASK_7_BITS);
val >>= 7;
// Set continuation bit if more bytes follow
if (val > 0)
chunk |= CONTINUATION_BIT;
bytes[numBytes++] = chunk;
}
// Write bytes in forward order
for (int i = 0; i < numBytes; i++)
{
WriteBits(8, bytes[i]);
}
}
/// <summary>
/// Write variable length signed integer - exact implementation
/// </summary>
public void WriteInteger(long val)
{
// Encode sign in LSB and magnitude in remaining bits
bool isNegative = val < 0;
long magnitude = isNegative ? (-val - 1) : val;
// Shift magnitude left and set sign bit
long encodedValue = (magnitude << 1) | (isNegative ? 1 : 0);
WriteUnsignedInteger(encodedValue);
}
/// <summary>
/// Write 16-bit signed integer using VC2022 encodeInteger16 algorithm
/// First bit is sign bit: 0=positive, 1=negative
/// For negative: -(magnitude + 1)
/// Exactly matches VC2022's encodeInteger16() implementation
/// </summary>
public void WriteInteger16(short val)
{
Console.Error.WriteLine($"🔢 [WriteInteger16] Input: {val}");
// Write sign bit (1 bit)
bool isNegative = val < 0;
WriteBit(isNegative ? 1 : 0);
Console.Error.WriteLine($"🔢 [WriteInteger16] Sign bit: {(isNegative ? 1 : 0)} (negative: {isNegative})");
// Calculate unsigned magnitude
uint magnitude;
if (isNegative)
{
// For negative: magnitude = (-val) - 1
magnitude = (uint)((-val) - 1);
}
else
{
// For positive: magnitude = val
magnitude = (uint)val;
}
Console.Error.WriteLine($"🔢 [WriteInteger16] Magnitude: {magnitude}");
// Write unsigned magnitude using VC2022's encodeUnsignedInteger16
encodeUnsignedInteger16((ushort)magnitude);
}
/// <summary>
/// Flush remaining bits - exact implementation of VC2022 flush()
/// VC2022: if (stream->capacity == BITS_IN_BYTE) { /* nothing */ } else { writeBits(stream, stream->capacity, 0); }
/// </summary>
public void Flush()
{
// Console.Error.WriteLine($"🔍 [Flush] capacity={_stream.Capacity}, BITS_IN_BYTE={EXIConstantsExact.BITS_IN_BYTE}");
// VC2022 exact implementation
if (_stream.Capacity == EXIConstantsExact.BITS_IN_BYTE)
{
// nothing to do, no bits in buffer
// Console.Error.WriteLine($"🔍 [Flush] nothing to do");
}
else
{
// errn = writeBits(stream, stream->capacity, 0);
// Console.Error.WriteLine($"🔍 [Flush] calling writeBits({_stream.Capacity}, 0)");
writeBits(_stream.Capacity, 0);
}
}
/// <summary>
/// Reset buffer state - exact match to VC2022 writeEXIHeader initialization
/// stream->buffer = 0; stream->capacity = 8;
/// </summary>
public void ResetBuffer()
{
_stream.Buffer = 0;
_stream.Capacity = 8;
}
public byte[] ToArray()
{
// VC2022 equivalent: encodeFinish() calls flush()
Flush();
return _stream.ToArray();
}
public int Position => _stream.Position;
public int BitPosition => EXIConstantsExact.BITS_IN_BYTE - _stream.Capacity;
public byte BufferState => _stream.Buffer;
public byte CapacityState => _stream.Capacity;
}
}