add supertonic
This commit is contained in:
@@ -83,6 +83,75 @@ namespace AGVNavigationCore.Controls
|
||||
// UI 정보 그리기 (변환 없이)
|
||||
if (_showGrid)
|
||||
DrawUIInfo(g);
|
||||
|
||||
// 동기화 화면 그리기 (변환 없이, 최상위)
|
||||
if (_canvasMode == CanvasMode.Sync)
|
||||
{
|
||||
DrawSyncScreen(g);
|
||||
}
|
||||
}
|
||||
|
||||
private void DrawSyncScreen(Graphics g)
|
||||
{
|
||||
// 반투명 검은색 배경
|
||||
using (var brush = new SolidBrush(Color.FromArgb(200, 0, 0, 0)))
|
||||
{
|
||||
g.FillRectangle(brush, this.ClientRectangle);
|
||||
}
|
||||
|
||||
// 중앙에 메시지 표시
|
||||
var center = new Point(Width / 2, Height / 2);
|
||||
|
||||
// 메시지 폰트
|
||||
using (var fontTitle = new Font("Malgun Gothic", 24, FontStyle.Bold))
|
||||
using (var fontDetail = new Font("Malgun Gothic", 14))
|
||||
using (var brushText = new SolidBrush(Color.White))
|
||||
{
|
||||
// 메인 메시지
|
||||
var sizeTitle = g.MeasureString(_syncMessage, fontTitle);
|
||||
g.DrawString(_syncMessage, fontTitle, brushText,
|
||||
center.X - sizeTitle.Width / 2,
|
||||
center.Y - sizeTitle.Height / 2 - 60);
|
||||
|
||||
// 진행률 바 배경
|
||||
int barWidth = 500;
|
||||
int barHeight = 30;
|
||||
int barX = center.X - barWidth / 2;
|
||||
int barY = center.Y + 10;
|
||||
|
||||
using (var brushBarBg = new SolidBrush(Color.FromArgb(64, 64, 64)))
|
||||
{
|
||||
g.FillRectangle(brushBarBg, barX, barY, barWidth, barHeight);
|
||||
}
|
||||
g.DrawRectangle(Pens.Gray, barX, barY, barWidth, barHeight);
|
||||
|
||||
// 진행률 바 채우기
|
||||
if (_syncProgress > 0)
|
||||
{
|
||||
using (var brushProgress = new SolidBrush(Color.LimeGreen))
|
||||
{
|
||||
int fillWidth = (int)((barWidth - 4) * _syncProgress);
|
||||
if (fillWidth > 0)
|
||||
g.FillRectangle(brushProgress, barX + 2, barY + 2, fillWidth, barHeight - 4);
|
||||
}
|
||||
}
|
||||
|
||||
// 진행률 텍스트
|
||||
string progressText = $"{(_syncProgress * 100):F0}%";
|
||||
var sizeProgress = g.MeasureString(progressText, fontDetail);
|
||||
g.DrawString(progressText, fontDetail, brushText,
|
||||
center.X - sizeProgress.Width / 2,
|
||||
barY + 5);
|
||||
|
||||
// 상세 메시지
|
||||
if (!string.IsNullOrEmpty(_syncDetail))
|
||||
{
|
||||
var sizeDetail = g.MeasureString(_syncDetail, fontDetail);
|
||||
g.DrawString(_syncDetail, fontDetail, brushText,
|
||||
center.X - sizeDetail.Width / 2,
|
||||
barY + barHeight + 20);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private void DrawGrid(Graphics g)
|
||||
|
||||
@@ -35,7 +35,8 @@ namespace AGVNavigationCore.Controls
|
||||
/// </summary>
|
||||
public enum CanvasMode
|
||||
{
|
||||
Edit // 편집 가능 (맵 에디터)
|
||||
Edit, // 편집 가능 (맵 에디터)
|
||||
Sync // 동기화 모드 (장비 설정 동기화)
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@@ -116,6 +117,11 @@ namespace AGVNavigationCore.Controls
|
||||
// RFID 중복 검사
|
||||
private HashSet<string> _duplicateRfidNodes = new HashSet<string>();
|
||||
|
||||
// 동기화 모드 관련
|
||||
private string _syncMessage = "동기화 중...";
|
||||
private float _syncProgress = 0.0f;
|
||||
private string _syncDetail = "";
|
||||
|
||||
// 브러쉬 및 펜
|
||||
private Brush _normalNodeBrush;
|
||||
private Brush _rotationNodeBrush;
|
||||
@@ -546,6 +552,40 @@ namespace AGVNavigationCore.Controls
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 동기화 상태 설정
|
||||
/// </summary>
|
||||
/// <param name="message">메인 메시지</param>
|
||||
/// <param name="progress">진행률 (0.0 ~ 1.0)</param>
|
||||
/// <param name="detail">상세 메시지</param>
|
||||
public void SetSyncStatus(string message, float progress, string detail = "")
|
||||
{
|
||||
_syncMessage = message;
|
||||
_syncProgress = Math.Max(0.0f, Math.Min(1.0f, progress));
|
||||
_syncDetail = detail;
|
||||
|
||||
if (_canvasMode != CanvasMode.Sync)
|
||||
{
|
||||
_canvasMode = CanvasMode.Sync;
|
||||
UpdateModeUI();
|
||||
}
|
||||
|
||||
Invalidate();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 동기화 모드 종료
|
||||
/// </summary>
|
||||
public void ExitSyncMode()
|
||||
{
|
||||
if (_canvasMode == CanvasMode.Sync)
|
||||
{
|
||||
_canvasMode = CanvasMode.Edit; // 기본 모드로 복귀 (또는 이전 모드)
|
||||
UpdateModeUI();
|
||||
Invalidate();
|
||||
}
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
#region Cleanup
|
||||
|
||||
@@ -107,6 +107,13 @@ namespace Project
|
||||
var item = synlist.ElementAt(synidx);
|
||||
UpdateProgressStatus(stepTime.TotalSeconds, 5, $"SYNC :{item.Key}");
|
||||
PUB.AGV.AGVCommand(item.Key, item.Value);
|
||||
|
||||
// 캔버스에 동기화 상태 표시
|
||||
if (PUB._mapCanvas != null)
|
||||
{
|
||||
float progress = (float)synidx / synlist.Count;
|
||||
PUB._mapCanvas.SetSyncStatus("장비 설정 동기화 중...", progress, $"항목: {item.Key} ({synidx + 1}/{synlist.Count})");
|
||||
}
|
||||
}
|
||||
LastCommandTime = DateTime.Now;
|
||||
PUB.sm.UpdateRunStepSeq();
|
||||
@@ -143,6 +150,11 @@ namespace Project
|
||||
{
|
||||
PUB.AddEEDB($"SYNC완료({PUB.Result.TargetPos})");
|
||||
UpdateProgressStatus(stepTime.TotalSeconds, 5, "SYNC : 완료");
|
||||
|
||||
// 동기화 완료 시 캔버스 모드 복귀
|
||||
if (PUB._mapCanvas != null)
|
||||
PUB._mapCanvas.SetSyncStatus("동기화 완료!", 1.0f, "잠시 후 메인 화면으로 이동합니다.");
|
||||
|
||||
LastCommandTime = DateTime.Now;
|
||||
PUB.sm.UpdateRunStepSeq();
|
||||
return false;
|
||||
|
||||
@@ -156,6 +156,10 @@ namespace Project
|
||||
|
||||
// 장치 관리 태스크 시작 (IDLE 진입 시 한 번만)
|
||||
StartDeviceManagementTask();
|
||||
|
||||
// 동기화 모드 종료 (혹시 남아있을 경우)
|
||||
if (PUB._mapCanvas != null)
|
||||
PUB._mapCanvas.ExitSyncMode();
|
||||
}
|
||||
|
||||
//자동소거기능
|
||||
|
||||
135
Cs_HMI/SubProject/SuperTonic/ExampleONNX.cs
Normal file
135
Cs_HMI/SubProject/SuperTonic/ExampleONNX.cs
Normal file
@@ -0,0 +1,135 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.IO;
|
||||
using System.Linq;
|
||||
|
||||
namespace Supertonic
|
||||
{
|
||||
class Program
|
||||
{
|
||||
class Args
|
||||
{
|
||||
public bool UseGpu { get; set; } = false;
|
||||
public string OnnxDir { get; set; } = "assets/onnx";
|
||||
public int TotalStep { get; set; } = 5;
|
||||
public float Speed { get; set; } = 1.05f;
|
||||
public int NTest { get; set; } = 4;
|
||||
public List<string> VoiceStyle { get; set; } = new List<string> { "assets/voice_styles/M1.json" };
|
||||
public List<string> Text { get; set; } = new List<string>
|
||||
{
|
||||
"This morning, I took a walk in the park, and the sound of the birds and the breeze was so pleasant that I stopped for a long time just to listen."
|
||||
};
|
||||
public string SaveDir { get; set; } = "results";
|
||||
public bool Batch { get; set; } = false;
|
||||
}
|
||||
|
||||
static Args ParseArgs(string[] args)
|
||||
{
|
||||
var result = new Args();
|
||||
|
||||
for (int i = 0; i < args.Length; i++)
|
||||
{
|
||||
switch (args[i])
|
||||
{
|
||||
case "--use-gpu":
|
||||
result.UseGpu = true;
|
||||
break;
|
||||
case "--batch":
|
||||
result.Batch = true;
|
||||
break;
|
||||
case "--onnx-dir" when i + 1 < args.Length:
|
||||
result.OnnxDir = args[++i];
|
||||
break;
|
||||
case "--total-step" when i + 1 < args.Length:
|
||||
result.TotalStep = int.Parse(args[++i]);
|
||||
break;
|
||||
case "--speed" when i + 1 < args.Length:
|
||||
result.Speed = float.Parse(args[++i]);
|
||||
break;
|
||||
case "--n-test" when i + 1 < args.Length:
|
||||
result.NTest = int.Parse(args[++i]);
|
||||
break;
|
||||
case "--voice-style" when i + 1 < args.Length:
|
||||
result.VoiceStyle = args[++i].Split(',').ToList();
|
||||
break;
|
||||
case "--text" when i + 1 < args.Length:
|
||||
result.Text = args[++i].Split('|').ToList();
|
||||
break;
|
||||
case "--save-dir" when i + 1 < args.Length:
|
||||
result.SaveDir = args[++i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void Main(string[] args)
|
||||
{
|
||||
Console.WriteLine("=== TTS Inference with ONNX Runtime (C#) ===\n");
|
||||
|
||||
// --- 1. Parse arguments --- //
|
||||
var parsedArgs = ParseArgs(args);
|
||||
int totalStep = parsedArgs.TotalStep;
|
||||
float speed = parsedArgs.Speed;
|
||||
int nTest = parsedArgs.NTest;
|
||||
string saveDir = parsedArgs.SaveDir;
|
||||
var voiceStylePaths = parsedArgs.VoiceStyle;
|
||||
var textList = parsedArgs.Text;
|
||||
bool batch = parsedArgs.Batch;
|
||||
|
||||
if (voiceStylePaths.Count != textList.Count)
|
||||
{
|
||||
throw new ArgumentException(
|
||||
$"Number of voice styles ({voiceStylePaths.Count}) must match number of texts ({textList.Count})");
|
||||
}
|
||||
int bsz = voiceStylePaths.Count;
|
||||
|
||||
// --- 2. Load Text to Speech --- //
|
||||
var textToSpeech = Helper.LoadTextToSpeech(parsedArgs.OnnxDir, parsedArgs.UseGpu);
|
||||
Console.WriteLine();
|
||||
|
||||
// --- 3. Load Voice Style --- //
|
||||
var style = Helper.LoadVoiceStyle(voiceStylePaths, verbose: true);
|
||||
|
||||
// --- 4. Synthesize speech --- //
|
||||
for (int n = 0; n < nTest; n++)
|
||||
{
|
||||
Console.WriteLine($"\n[{n + 1}/{nTest}] Starting synthesis...");
|
||||
|
||||
var (wav, duration) = Helper.Timer("Generating speech from text", () =>
|
||||
{
|
||||
if (batch)
|
||||
{
|
||||
return textToSpeech.Batch(textList, style, totalStep, speed);
|
||||
}
|
||||
else
|
||||
{
|
||||
return textToSpeech.Call(textList[0], style, totalStep, speed);
|
||||
}
|
||||
});
|
||||
|
||||
if (!Directory.Exists(saveDir))
|
||||
{
|
||||
Directory.CreateDirectory(saveDir);
|
||||
}
|
||||
|
||||
for (int b = 0; b < bsz; b++)
|
||||
{
|
||||
string fname = $"{Helper.SanitizeFilename(textList[b], 20)}_{n + 1}.wav";
|
||||
|
||||
int wavLen = (int)(textToSpeech.SampleRate * duration[b]);
|
||||
var wavOut = new float[wavLen];
|
||||
Array.Copy(wav, b * wav.Length / bsz, wavOut, 0, Math.Min(wavLen, wav.Length / bsz));
|
||||
|
||||
string outputPath = Path.Combine(saveDir, fname);
|
||||
Helper.WriteWavFile(outputPath, wavOut, textToSpeech.SampleRate);
|
||||
Console.WriteLine($"Saved: {outputPath}");
|
||||
}
|
||||
}
|
||||
|
||||
Console.WriteLine("\n=== Synthesis completed successfully! ===");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
881
Cs_HMI/SubProject/SuperTonic/Helper.cs
Normal file
881
Cs_HMI/SubProject/SuperTonic/Helper.cs
Normal file
@@ -0,0 +1,881 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.IO;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Text.Json;
|
||||
using System.Text.RegularExpressions;
|
||||
using Microsoft.ML.OnnxRuntime;
|
||||
using Microsoft.ML.OnnxRuntime.Tensors;
|
||||
|
||||
namespace Supertonic
|
||||
{
|
||||
// ============================================================================
|
||||
// Configuration classes
|
||||
// ============================================================================
|
||||
|
||||
public class Config
|
||||
{
|
||||
public AEConfig AE { get; set; } = null;
|
||||
public TTLConfig TTL { get; set; } = null;
|
||||
|
||||
public class AEConfig
|
||||
{
|
||||
public int SampleRate { get; set; }
|
||||
public int BaseChunkSize { get; set; }
|
||||
}
|
||||
|
||||
public class TTLConfig
|
||||
{
|
||||
public int ChunkCompressFactor { get; set; }
|
||||
public int LatentDim { get; set; }
|
||||
}
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Style class
|
||||
// ============================================================================
|
||||
|
||||
public class Style
|
||||
{
|
||||
public float[] Ttl { get; set; }
|
||||
public long[] TtlShape { get; set; }
|
||||
public float[] Dp { get; set; }
|
||||
public long[] DpShape { get; set; }
|
||||
|
||||
public Style(float[] ttl, long[] ttlShape, float[] dp, long[] dpShape)
|
||||
{
|
||||
Ttl = ttl;
|
||||
TtlShape = ttlShape;
|
||||
Dp = dp;
|
||||
DpShape = dpShape;
|
||||
}
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Unicode text processor
|
||||
// ============================================================================
|
||||
|
||||
public class UnicodeProcessor
|
||||
{
|
||||
private readonly Dictionary<int, long> _indexer;
|
||||
|
||||
public UnicodeProcessor(string unicodeIndexerPath)
|
||||
{
|
||||
var json = File.ReadAllText(unicodeIndexerPath);
|
||||
var indexerArray = JsonSerializer.Deserialize<long[]>(json) ?? throw new Exception("Failed to load indexer");
|
||||
_indexer = new Dictionary<int, long>();
|
||||
for (int i = 0; i < indexerArray.Length; i++)
|
||||
{
|
||||
_indexer[i] = indexerArray[i];
|
||||
}
|
||||
}
|
||||
|
||||
private static string RemoveEmojis(string text)
|
||||
{
|
||||
var result = new StringBuilder();
|
||||
for (int i = 0; i < text.Length; i++)
|
||||
{
|
||||
int codePoint;
|
||||
if (char.IsHighSurrogate(text[i]) && i + 1 < text.Length && char.IsLowSurrogate(text[i + 1]))
|
||||
{
|
||||
// Get the full code point from surrogate pair
|
||||
codePoint = char.ConvertToUtf32(text[i], text[i + 1]);
|
||||
i++; // Skip the low surrogate
|
||||
}
|
||||
else
|
||||
{
|
||||
codePoint = text[i];
|
||||
}
|
||||
|
||||
// Check if code point is in emoji ranges
|
||||
bool isEmoji = (codePoint >= 0x1F600 && codePoint <= 0x1F64F) ||
|
||||
(codePoint >= 0x1F300 && codePoint <= 0x1F5FF) ||
|
||||
(codePoint >= 0x1F680 && codePoint <= 0x1F6FF) ||
|
||||
(codePoint >= 0x1F700 && codePoint <= 0x1F77F) ||
|
||||
(codePoint >= 0x1F780 && codePoint <= 0x1F7FF) ||
|
||||
(codePoint >= 0x1F800 && codePoint <= 0x1F8FF) ||
|
||||
(codePoint >= 0x1F900 && codePoint <= 0x1F9FF) ||
|
||||
(codePoint >= 0x1FA00 && codePoint <= 0x1FA6F) ||
|
||||
(codePoint >= 0x1FA70 && codePoint <= 0x1FAFF) ||
|
||||
(codePoint >= 0x2600 && codePoint <= 0x26FF) ||
|
||||
(codePoint >= 0x2700 && codePoint <= 0x27BF) ||
|
||||
(codePoint >= 0x1F1E6 && codePoint <= 0x1F1FF);
|
||||
|
||||
if (!isEmoji)
|
||||
{
|
||||
if (codePoint > 0xFFFF)
|
||||
{
|
||||
// Add back as surrogate pair
|
||||
result.Append(char.ConvertFromUtf32(codePoint));
|
||||
}
|
||||
else
|
||||
{
|
||||
result.Append((char)codePoint);
|
||||
}
|
||||
}
|
||||
}
|
||||
return result.ToString();
|
||||
}
|
||||
|
||||
private string PreprocessText(string text)
|
||||
{
|
||||
// TODO: Need advanced normalizer for better performance
|
||||
text = text.Normalize(NormalizationForm.FormKD);
|
||||
|
||||
// FIXME: this should be fixed for non-English languages
|
||||
|
||||
// Remove emojis (wide Unicode range)
|
||||
// C# doesn't support \u{...} syntax in regex, so we use character filtering instead
|
||||
text = RemoveEmojis(text);
|
||||
|
||||
// Replace various dashes and symbols
|
||||
var replacements = new Dictionary<string, string>
|
||||
{
|
||||
{"–", "-"}, // en dash
|
||||
{"‑", "-"}, // non-breaking hyphen
|
||||
{"—", "-"}, // em dash
|
||||
{"¯", " "}, // macron
|
||||
{"_", " "}, // underscore
|
||||
{"\u201C", "\""}, // left double quote
|
||||
{"\u201D", "\""}, // right double quote
|
||||
{"\u2018", "'"}, // left single quote
|
||||
{"\u2019", "'"}, // right single quote
|
||||
{"´", "'"}, // acute accent
|
||||
{"`", "'"}, // grave accent
|
||||
{"[", " "}, // left bracket
|
||||
{"]", " "}, // right bracket
|
||||
{"|", " "}, // vertical bar
|
||||
{"/", " "}, // slash
|
||||
{"#", " "}, // hash
|
||||
{"→", " "}, // right arrow
|
||||
{"←", " "}, // left arrow
|
||||
};
|
||||
|
||||
foreach (var kvp in replacements)
|
||||
{
|
||||
text = text.Replace(kvp.Key, kvp.Value);
|
||||
}
|
||||
|
||||
// Remove combining diacritics // FIXME: this should be fixed for non-English languages
|
||||
text = Regex.Replace(text, @"[\u0302\u0303\u0304\u0305\u0306\u0307\u0308\u030A\u030B\u030C\u0327\u0328\u0329\u032A\u032B\u032C\u032D\u032E\u032F]", "");
|
||||
|
||||
// Remove special symbols
|
||||
text = Regex.Replace(text, @"[♥☆♡©\\]", "");
|
||||
|
||||
// Replace known expressions
|
||||
var exprReplacements = new Dictionary<string, string>
|
||||
{
|
||||
{"@", " at "},
|
||||
{"e.g.,", "for example, "},
|
||||
{"i.e.,", "that is, "},
|
||||
};
|
||||
|
||||
foreach (var kvp in exprReplacements)
|
||||
{
|
||||
text = text.Replace(kvp.Key, kvp.Value);
|
||||
}
|
||||
|
||||
// Fix spacing around punctuation
|
||||
text = Regex.Replace(text, @" ,", ",");
|
||||
text = Regex.Replace(text, @" \.", ".");
|
||||
text = Regex.Replace(text, @" !", "!");
|
||||
text = Regex.Replace(text, @" \?", "?");
|
||||
text = Regex.Replace(text, @" ;", ";");
|
||||
text = Regex.Replace(text, @" :", ":");
|
||||
text = Regex.Replace(text, @" '", "'");
|
||||
|
||||
// Remove duplicate quotes
|
||||
while (text.Contains("\"\""))
|
||||
{
|
||||
text = text.Replace("\"\"", "\"");
|
||||
}
|
||||
while (text.Contains("''"))
|
||||
{
|
||||
text = text.Replace("''", "'");
|
||||
}
|
||||
while (text.Contains("``"))
|
||||
{
|
||||
text = text.Replace("``", "`");
|
||||
}
|
||||
|
||||
// Remove extra spaces
|
||||
text = Regex.Replace(text, @"\s+", " ").Trim();
|
||||
|
||||
// If text doesn't end with punctuation, quotes, or closing brackets, add a period
|
||||
if (!Regex.IsMatch(text, @"[.!?;:,'\u0022\u201C\u201D\u2018\u2019)\]}…。」』】〉》›»]$"))
|
||||
{
|
||||
text += ".";
|
||||
}
|
||||
|
||||
return text;
|
||||
}
|
||||
|
||||
private int[] TextToUnicodeValues(string text)
|
||||
{
|
||||
return text.Select(c => (int)c).ToArray();
|
||||
}
|
||||
|
||||
private float[][][] GetTextMask(long[] textIdsLengths)
|
||||
{
|
||||
return Helper.LengthToMask(textIdsLengths);
|
||||
}
|
||||
|
||||
public (long[][] textIds, float[][][] textMask) Call(List<string> textList)
|
||||
{
|
||||
var processedTexts = textList.Select(t => PreprocessText(t)).ToList();
|
||||
var textIdsLengths = processedTexts.Select(t => (long)t.Length).ToArray();
|
||||
long maxLen = textIdsLengths.Max();
|
||||
|
||||
var textIds = new long[textList.Count][];
|
||||
for (int i = 0; i < processedTexts.Count; i++)
|
||||
{
|
||||
textIds[i] = new long[maxLen];
|
||||
var unicodeVals = TextToUnicodeValues(processedTexts[i]);
|
||||
for (int j = 0; j < unicodeVals.Length; j++)
|
||||
{
|
||||
if (_indexer.TryGetValue(unicodeVals[j], out long val))
|
||||
{
|
||||
textIds[i][j] = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
var textMask = GetTextMask(textIdsLengths);
|
||||
return (textIds, textMask);
|
||||
}
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// TextToSpeech class
|
||||
// ============================================================================
|
||||
|
||||
public class TextToSpeech
|
||||
{
|
||||
private readonly Config _cfgs;
|
||||
private readonly UnicodeProcessor _textProcessor;
|
||||
private readonly InferenceSession _dpOrt;
|
||||
private readonly InferenceSession _textEncOrt;
|
||||
private readonly InferenceSession _vectorEstOrt;
|
||||
private readonly InferenceSession _vocoderOrt;
|
||||
public readonly int SampleRate;
|
||||
private readonly int _baseChunkSize;
|
||||
private readonly int _chunkCompressFactor;
|
||||
private readonly int _ldim;
|
||||
|
||||
public TextToSpeech(
|
||||
Config cfgs,
|
||||
UnicodeProcessor textProcessor,
|
||||
InferenceSession dpOrt,
|
||||
InferenceSession textEncOrt,
|
||||
InferenceSession vectorEstOrt,
|
||||
InferenceSession vocoderOrt)
|
||||
{
|
||||
_cfgs = cfgs;
|
||||
_textProcessor = textProcessor;
|
||||
_dpOrt = dpOrt;
|
||||
_textEncOrt = textEncOrt;
|
||||
_vectorEstOrt = vectorEstOrt;
|
||||
_vocoderOrt = vocoderOrt;
|
||||
SampleRate = cfgs.AE.SampleRate;
|
||||
_baseChunkSize = cfgs.AE.BaseChunkSize;
|
||||
_chunkCompressFactor = cfgs.TTL.ChunkCompressFactor;
|
||||
_ldim = cfgs.TTL.LatentDim;
|
||||
}
|
||||
|
||||
private (float[][][] noisyLatent, float[][][] latentMask) SampleNoisyLatent(float[] duration)
|
||||
{
|
||||
int bsz = duration.Length;
|
||||
float wavLenMax = duration.Max() * SampleRate;
|
||||
var wavLengths = duration.Select(d => (long)(d * SampleRate)).ToArray();
|
||||
int chunkSize = _baseChunkSize * _chunkCompressFactor;
|
||||
int latentLen = (int)((wavLenMax + chunkSize - 1) / chunkSize);
|
||||
int latentDim = _ldim * _chunkCompressFactor;
|
||||
|
||||
// Generate random noise
|
||||
var random = new Random();
|
||||
var noisyLatent = new float[bsz][][];
|
||||
for (int b = 0; b < bsz; b++)
|
||||
{
|
||||
noisyLatent[b] = new float[latentDim][];
|
||||
for (int d = 0; d < latentDim; d++)
|
||||
{
|
||||
noisyLatent[b][d] = new float[latentLen];
|
||||
for (int t = 0; t < latentLen; t++)
|
||||
{
|
||||
// Box-Muller transform for normal distribution
|
||||
double u1 = 1.0 - random.NextDouble();
|
||||
double u2 = 1.0 - random.NextDouble();
|
||||
noisyLatent[b][d][t] = (float)(Math.Sqrt(-2.0 * Math.Log(u1)) * Math.Cos(2.0 * Math.PI * u2));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
var latentMask = Helper.GetLatentMask(wavLengths, _baseChunkSize, _chunkCompressFactor);
|
||||
|
||||
// Apply mask
|
||||
for (int b = 0; b < bsz; b++)
|
||||
{
|
||||
for (int d = 0; d < latentDim; d++)
|
||||
{
|
||||
for (int t = 0; t < latentLen; t++)
|
||||
{
|
||||
noisyLatent[b][d][t] *= latentMask[b][0][t];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (noisyLatent, latentMask);
|
||||
}
|
||||
|
||||
private (float[] wav, float[] duration) _Infer(List<string> textList, Style style, int totalStep, float speed = 1.05f)
|
||||
{
|
||||
int bsz = textList.Count;
|
||||
if (bsz != style.TtlShape[0])
|
||||
{
|
||||
throw new ArgumentException("Number of texts must match number of style vectors");
|
||||
}
|
||||
|
||||
// Process text
|
||||
var (textIds, textMask) = _textProcessor.Call(textList);
|
||||
var textIdsShape = new long[] { bsz, textIds[0].Length };
|
||||
var textMaskShape = new long[] { bsz, 1, textMask[0][0].Length };
|
||||
|
||||
var textIdsTensor = Helper.IntArrayToTensor(textIds, textIdsShape);
|
||||
var textMaskTensor = Helper.ArrayToTensor(textMask, textMaskShape);
|
||||
|
||||
var styleTtlTensor = new DenseTensor<float>(style.Ttl, style.TtlShape.Select(x => (int)x).ToArray());
|
||||
var styleDpTensor = new DenseTensor<float>(style.Dp, style.DpShape.Select(x => (int)x).ToArray());
|
||||
|
||||
// Run duration predictor
|
||||
var dpInputs = new List<NamedOnnxValue>
|
||||
{
|
||||
NamedOnnxValue.CreateFromTensor("text_ids", textIdsTensor),
|
||||
NamedOnnxValue.CreateFromTensor("style_dp", styleDpTensor),
|
||||
NamedOnnxValue.CreateFromTensor("text_mask", textMaskTensor)
|
||||
};
|
||||
using (var dpOutputs = _dpOrt.Run(dpInputs))
|
||||
{
|
||||
var durOnnx = dpOutputs.First(o => o.Name == "duration").AsTensor<float>().ToArray();
|
||||
// Apply speed factor to duration
|
||||
for (int i = 0; i < durOnnx.Length; i++)
|
||||
{
|
||||
durOnnx[i] /= speed;
|
||||
}
|
||||
|
||||
// Run text encoder
|
||||
var textEncInputs = new List<NamedOnnxValue>
|
||||
{
|
||||
NamedOnnxValue.CreateFromTensor("text_ids", textIdsTensor),
|
||||
NamedOnnxValue.CreateFromTensor("style_ttl", styleTtlTensor),
|
||||
NamedOnnxValue.CreateFromTensor("text_mask", textMaskTensor)
|
||||
};
|
||||
using (var textEncOutputs = _textEncOrt.Run(textEncInputs))
|
||||
{
|
||||
var textEmbTensor = textEncOutputs.First(o => o.Name == "text_emb").AsTensor<float>();
|
||||
// Sample noisy latent
|
||||
var (xt, latentMask) = SampleNoisyLatent(durOnnx);
|
||||
var latentShape = new long[] { bsz, xt[0].Length, xt[0][0].Length };
|
||||
var latentMaskShape = new long[] { bsz, 1, latentMask[0][0].Length };
|
||||
|
||||
var totalStepArray = Enumerable.Repeat((float)totalStep, bsz).ToArray();
|
||||
|
||||
// Iterative denoising
|
||||
for (int step = 0; step < totalStep; step++)
|
||||
{
|
||||
var currentStepArray = Enumerable.Repeat((float)step, bsz).ToArray();
|
||||
|
||||
var vectorEstInputs = new List<NamedOnnxValue>
|
||||
{
|
||||
NamedOnnxValue.CreateFromTensor("noisy_latent", Helper.ArrayToTensor(xt, latentShape)),
|
||||
NamedOnnxValue.CreateFromTensor("text_emb", textEmbTensor),
|
||||
NamedOnnxValue.CreateFromTensor("style_ttl", styleTtlTensor),
|
||||
NamedOnnxValue.CreateFromTensor("text_mask", textMaskTensor),
|
||||
NamedOnnxValue.CreateFromTensor("latent_mask", Helper.ArrayToTensor(latentMask, latentMaskShape)),
|
||||
NamedOnnxValue.CreateFromTensor("total_step", new DenseTensor<float>(totalStepArray, new int[] { bsz })),
|
||||
NamedOnnxValue.CreateFromTensor("current_step", new DenseTensor<float>(currentStepArray, new int[] { bsz }))
|
||||
};
|
||||
|
||||
using (var vectorEstOutputs = _vectorEstOrt.Run(vectorEstInputs))
|
||||
{
|
||||
var denoisedLatent = vectorEstOutputs.First(o => o.Name == "denoised_latent").AsTensor<float>();
|
||||
// Update xt
|
||||
int idx = 0;
|
||||
for (int b = 0; b < bsz; b++)
|
||||
{
|
||||
for (int d = 0; d < xt[b].Length; d++)
|
||||
{
|
||||
for (int t = 0; t < xt[b][d].Length; t++)
|
||||
{
|
||||
xt[b][d][t] = denoisedLatent.GetValue(idx++);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
// Run vocoder
|
||||
var vocoderInputs = new List<NamedOnnxValue>
|
||||
{
|
||||
NamedOnnxValue.CreateFromTensor("latent", Helper.ArrayToTensor(xt, latentShape))
|
||||
};
|
||||
using (var vocoderOutputs = _vocoderOrt.Run(vocoderInputs))
|
||||
{
|
||||
var wavTensor = vocoderOutputs.First(o => o.Name == "wav_tts").AsTensor<float>();
|
||||
return (wavTensor.ToArray(), durOnnx);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
public (float[] wav, float[] duration) Call(string text, Style style, int totalStep, float speed = 1.05f, float silenceDuration = 0.3f)
|
||||
{
|
||||
if (style.TtlShape[0] != 1)
|
||||
{
|
||||
throw new ArgumentException("Single speaker text to speech only supports single style");
|
||||
}
|
||||
|
||||
var textList = Helper.ChunkText(text);
|
||||
var wavCat = new List<float>();
|
||||
float durCat = 0.0f;
|
||||
|
||||
foreach (var chunk in textList)
|
||||
{
|
||||
var (wav, duration) = _Infer(new List<string> { chunk }, style, totalStep, speed);
|
||||
|
||||
if (wavCat.Count == 0)
|
||||
{
|
||||
wavCat.AddRange(wav);
|
||||
durCat = duration[0];
|
||||
}
|
||||
else
|
||||
{
|
||||
int silenceLen = (int)(silenceDuration * SampleRate);
|
||||
var silence = new float[silenceLen];
|
||||
wavCat.AddRange(silence);
|
||||
wavCat.AddRange(wav);
|
||||
durCat += duration[0] + silenceDuration;
|
||||
}
|
||||
}
|
||||
|
||||
return (wavCat.ToArray(), new float[] { durCat });
|
||||
}
|
||||
|
||||
public (float[] wav, float[] duration) Batch(List<string> textList, Style style, int totalStep, float speed = 1.05f)
|
||||
{
|
||||
return _Infer(textList, style, totalStep, speed);
|
||||
}
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Helper class with utility functions
|
||||
// ============================================================================
|
||||
|
||||
public static class Helper
|
||||
{
|
||||
// ============================================================================
|
||||
// Utility functions
|
||||
// ============================================================================
|
||||
|
||||
public static float[][][] LengthToMask(long[] lengths, long maxLen = -1)
|
||||
{
|
||||
if (maxLen == -1)
|
||||
{
|
||||
maxLen = lengths.Max();
|
||||
}
|
||||
|
||||
var mask = new float[lengths.Length][][];
|
||||
for (int i = 0; i < lengths.Length; i++)
|
||||
{
|
||||
mask[i] = new float[1][];
|
||||
mask[i][0] = new float[maxLen];
|
||||
for (int j = 0; j < maxLen; j++)
|
||||
{
|
||||
mask[i][0][j] = j < lengths[i] ? 1.0f : 0.0f;
|
||||
}
|
||||
}
|
||||
return mask;
|
||||
}
|
||||
|
||||
public static float[][][] GetLatentMask(long[] wavLengths, int baseChunkSize, int chunkCompressFactor)
|
||||
{
|
||||
int latentSize = baseChunkSize * chunkCompressFactor;
|
||||
var latentLengths = wavLengths.Select(len => (len + latentSize - 1) / latentSize).ToArray();
|
||||
return LengthToMask(latentLengths);
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// ONNX model loading
|
||||
// ============================================================================
|
||||
|
||||
public static InferenceSession LoadOnnx(string onnxPath, SessionOptions opts)
|
||||
{
|
||||
return new InferenceSession(onnxPath, opts);
|
||||
}
|
||||
|
||||
public static (InferenceSession dp, InferenceSession textEnc, InferenceSession vectorEst, InferenceSession vocoder)
|
||||
LoadOnnxAll(string onnxDir, SessionOptions opts)
|
||||
{
|
||||
var dpPath = Path.Combine(onnxDir, "duration_predictor.onnx");
|
||||
var textEncPath = Path.Combine(onnxDir, "text_encoder.onnx");
|
||||
var vectorEstPath = Path.Combine(onnxDir, "vector_estimator.onnx");
|
||||
var vocoderPath = Path.Combine(onnxDir, "vocoder.onnx");
|
||||
|
||||
return (
|
||||
LoadOnnx(dpPath, opts),
|
||||
LoadOnnx(textEncPath, opts),
|
||||
LoadOnnx(vectorEstPath, opts),
|
||||
LoadOnnx(vocoderPath, opts)
|
||||
);
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Configuration loading
|
||||
// ============================================================================
|
||||
|
||||
public static Config LoadCfgs(string onnxDir)
|
||||
{
|
||||
var cfgPath = Path.Combine(onnxDir, "tts.json");
|
||||
var json = File.ReadAllText(cfgPath);
|
||||
|
||||
using (var doc = JsonDocument.Parse(json))
|
||||
{
|
||||
var root = doc.RootElement;
|
||||
return new Config
|
||||
{
|
||||
AE = new Config.AEConfig
|
||||
{
|
||||
SampleRate = root.GetProperty("ae").GetProperty("sample_rate").GetInt32(),
|
||||
BaseChunkSize = root.GetProperty("ae").GetProperty("base_chunk_size").GetInt32()
|
||||
},
|
||||
TTL = new Config.TTLConfig
|
||||
{
|
||||
ChunkCompressFactor = root.GetProperty("ttl").GetProperty("chunk_compress_factor").GetInt32(),
|
||||
LatentDim = root.GetProperty("ttl").GetProperty("latent_dim").GetInt32()
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
public static UnicodeProcessor LoadTextProcessor(string onnxDir)
|
||||
{
|
||||
var unicodeIndexerPath = Path.Combine(onnxDir, "unicode_indexer.json");
|
||||
return new UnicodeProcessor(unicodeIndexerPath);
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Voice style loading
|
||||
// ============================================================================
|
||||
|
||||
public static Style LoadVoiceStyle(List<string> voiceStylePaths, bool verbose = false)
|
||||
{
|
||||
int bsz = voiceStylePaths.Count;
|
||||
|
||||
// Read first file to get dimensions
|
||||
var firstJson = File.ReadAllText(voiceStylePaths[0]);
|
||||
using (var firstDoc = JsonDocument.Parse(firstJson))
|
||||
{
|
||||
var firstRoot = firstDoc.RootElement;
|
||||
|
||||
var ttlDims = ParseInt64Array(firstRoot.GetProperty("style_ttl").GetProperty("dims"));
|
||||
var dpDims = ParseInt64Array(firstRoot.GetProperty("style_dp").GetProperty("dims"));
|
||||
|
||||
long ttlDim1 = ttlDims[1];
|
||||
long ttlDim2 = ttlDims[2];
|
||||
long dpDim1 = dpDims[1];
|
||||
long dpDim2 = dpDims[2];
|
||||
|
||||
// Pre-allocate arrays with full batch size
|
||||
int ttlSize = (int)(bsz * ttlDim1 * ttlDim2);
|
||||
int dpSize = (int)(bsz * dpDim1 * dpDim2);
|
||||
var ttlFlat = new float[ttlSize];
|
||||
var dpFlat = new float[dpSize];
|
||||
|
||||
// Fill in the data
|
||||
for (int i = 0; i < bsz; i++)
|
||||
{
|
||||
var json = File.ReadAllText(voiceStylePaths[i]);
|
||||
using (var doc = JsonDocument.Parse(json))
|
||||
{
|
||||
var root = doc.RootElement;
|
||||
// Flatten data
|
||||
var ttlData3D = ParseFloat3DArray(root.GetProperty("style_ttl").GetProperty("data"));
|
||||
var ttlDataFlat = new List<float>();
|
||||
foreach (var batch in ttlData3D)
|
||||
{
|
||||
foreach (var row in batch)
|
||||
{
|
||||
ttlDataFlat.AddRange(row);
|
||||
}
|
||||
}
|
||||
|
||||
var dpData3D = ParseFloat3DArray(root.GetProperty("style_dp").GetProperty("data"));
|
||||
var dpDataFlat = new List<float>();
|
||||
foreach (var batch in dpData3D)
|
||||
{
|
||||
foreach (var row in batch)
|
||||
{
|
||||
dpDataFlat.AddRange(row);
|
||||
}
|
||||
}
|
||||
|
||||
// Copy to pre-allocated array
|
||||
int ttlOffset = (int)(i * ttlDim1 * ttlDim2);
|
||||
ttlDataFlat.CopyTo(ttlFlat, ttlOffset);
|
||||
|
||||
int dpOffset = (int)(i * dpDim1 * dpDim2);
|
||||
dpDataFlat.CopyTo(dpFlat, dpOffset);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
var ttlShape = new long[] { bsz, ttlDim1, ttlDim2 };
|
||||
var dpShape = new long[] { bsz, dpDim1, dpDim2 };
|
||||
|
||||
if (verbose)
|
||||
{
|
||||
Console.WriteLine($"Loaded {bsz} voice styles");
|
||||
}
|
||||
|
||||
return new Style(ttlFlat, ttlShape, dpFlat, dpShape);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
private static float[][][] ParseFloat3DArray(JsonElement element)
|
||||
{
|
||||
var result = new List<float[][]>();
|
||||
foreach (var batch in element.EnumerateArray())
|
||||
{
|
||||
var batch2D = new List<float[]>();
|
||||
foreach (var row in batch.EnumerateArray())
|
||||
{
|
||||
var rowData = new List<float>();
|
||||
foreach (var val in row.EnumerateArray())
|
||||
{
|
||||
rowData.Add(val.GetSingle());
|
||||
}
|
||||
batch2D.Add(rowData.ToArray());
|
||||
}
|
||||
result.Add(batch2D.ToArray());
|
||||
}
|
||||
return result.ToArray();
|
||||
}
|
||||
|
||||
private static long[] ParseInt64Array(JsonElement element)
|
||||
{
|
||||
var result = new List<long>();
|
||||
foreach (var val in element.EnumerateArray())
|
||||
{
|
||||
result.Add(val.GetInt64());
|
||||
}
|
||||
return result.ToArray();
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// TextToSpeech loading
|
||||
// ============================================================================
|
||||
|
||||
public static TextToSpeech LoadTextToSpeech(string onnxDir, bool useGpu = false)
|
||||
{
|
||||
var opts = new SessionOptions();
|
||||
if (useGpu)
|
||||
{
|
||||
throw new NotImplementedException("GPU mode is not supported yet");
|
||||
}
|
||||
else
|
||||
{
|
||||
Console.WriteLine("Using CPU for inference");
|
||||
}
|
||||
|
||||
var cfgs = LoadCfgs(onnxDir);
|
||||
var (dpOrt, textEncOrt, vectorEstOrt, vocoderOrt) = LoadOnnxAll(onnxDir, opts);
|
||||
var textProcessor = LoadTextProcessor(onnxDir);
|
||||
|
||||
return new TextToSpeech(cfgs, textProcessor, dpOrt, textEncOrt, vectorEstOrt, vocoderOrt);
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// WAV file writing
|
||||
// ============================================================================
|
||||
|
||||
public static void WriteWavFile(string filename, float[] audioData, int sampleRate)
|
||||
{
|
||||
using (var writer = new BinaryWriter(File.Open(filename, FileMode.Create)))
|
||||
{
|
||||
int numChannels = 1;
|
||||
int bitsPerSample = 16;
|
||||
int byteRate = sampleRate * numChannels * bitsPerSample / 8;
|
||||
short blockAlign = (short)(numChannels * bitsPerSample / 8);
|
||||
int dataSize = audioData.Length * bitsPerSample / 8;
|
||||
|
||||
// RIFF header
|
||||
writer.Write(Encoding.ASCII.GetBytes("RIFF"));
|
||||
writer.Write(36 + dataSize);
|
||||
writer.Write(Encoding.ASCII.GetBytes("WAVE"));
|
||||
|
||||
// fmt chunk
|
||||
writer.Write(Encoding.ASCII.GetBytes("fmt "));
|
||||
writer.Write(16); // fmt chunk size
|
||||
writer.Write((short)1); // audio format (PCM)
|
||||
writer.Write((short)numChannels);
|
||||
writer.Write(sampleRate);
|
||||
writer.Write(byteRate);
|
||||
writer.Write(blockAlign);
|
||||
writer.Write((short)bitsPerSample);
|
||||
|
||||
// data chunk
|
||||
writer.Write(Encoding.ASCII.GetBytes("data"));
|
||||
writer.Write(dataSize);
|
||||
|
||||
// Write audio data
|
||||
foreach (var sample in audioData)
|
||||
{
|
||||
float clamped = Math.Max(-1.0f, Math.Min(1.0f, sample));
|
||||
short intSample = (short)(clamped * 32767);
|
||||
writer.Write(intSample);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Tensor conversion utilities
|
||||
// ============================================================================
|
||||
|
||||
public static DenseTensor<float> ArrayToTensor(float[][][] array, long[] dims)
|
||||
{
|
||||
var flat = new List<float>();
|
||||
foreach (var batch in array)
|
||||
{
|
||||
foreach (var row in batch)
|
||||
{
|
||||
flat.AddRange(row);
|
||||
}
|
||||
}
|
||||
return new DenseTensor<float>(flat.ToArray(), dims.Select(x => (int)x).ToArray());
|
||||
}
|
||||
|
||||
public static DenseTensor<long> IntArrayToTensor(long[][] array, long[] dims)
|
||||
{
|
||||
var flat = new List<long>();
|
||||
foreach (var row in array)
|
||||
{
|
||||
flat.AddRange(row);
|
||||
}
|
||||
return new DenseTensor<long>(flat.ToArray(), dims.Select(x => (int)x).ToArray());
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Timer utility
|
||||
// ============================================================================
|
||||
|
||||
public static T Timer<T>(string name, Func<T> func)
|
||||
{
|
||||
var start = DateTime.Now;
|
||||
Console.WriteLine($"{name}...");
|
||||
var result = func();
|
||||
var elapsed = (DateTime.Now - start).TotalSeconds;
|
||||
Console.WriteLine($" -> {name} completed in {elapsed:F2} sec");
|
||||
return result;
|
||||
}
|
||||
|
||||
public static string SanitizeFilename(string text, int maxLen)
|
||||
{
|
||||
var result = new StringBuilder();
|
||||
int count = 0;
|
||||
foreach (char c in text)
|
||||
{
|
||||
if (count >= maxLen) break;
|
||||
if (char.IsLetterOrDigit(c))
|
||||
{
|
||||
result.Append(c);
|
||||
}
|
||||
else
|
||||
{
|
||||
result.Append('_');
|
||||
}
|
||||
count++;
|
||||
}
|
||||
return result.ToString();
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Chunk text
|
||||
// ============================================================================
|
||||
|
||||
public static List<string> ChunkText(string text, int maxLen = 300)
|
||||
{
|
||||
var chunks = new List<string>();
|
||||
|
||||
// Split by paragraph (two or more newlines)
|
||||
var paragraphRegex = new Regex(@"\n\s*\n+");
|
||||
var paragraphs = paragraphRegex.Split(text.Trim())
|
||||
.Select(p => p.Trim())
|
||||
.Where(p => !string.IsNullOrEmpty(p))
|
||||
.ToList();
|
||||
|
||||
// Split by sentence boundaries, excluding abbreviations
|
||||
var sentenceRegex = new Regex(@"(?<!Mr\.|Mrs\.|Ms\.|Dr\.|Prof\.|Sr\.|Jr\.|Ph\.D\.|etc\.|e\.g\.|i\.e\.|vs\.|Inc\.|Ltd\.|Co\.|Corp\.|St\.|Ave\.|Blvd\.)(?<!\b[A-Z]\.)(?<=[.!?])\s+");
|
||||
|
||||
foreach (var paragraph in paragraphs)
|
||||
{
|
||||
var sentences = sentenceRegex.Split(paragraph);
|
||||
string currentChunk = "";
|
||||
|
||||
foreach (var sentence in sentences)
|
||||
{
|
||||
if (string.IsNullOrEmpty(sentence)) continue;
|
||||
|
||||
if (currentChunk.Length + sentence.Length + 1 <= maxLen)
|
||||
{
|
||||
if (!string.IsNullOrEmpty(currentChunk))
|
||||
{
|
||||
currentChunk += " ";
|
||||
}
|
||||
currentChunk += sentence;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!string.IsNullOrEmpty(currentChunk))
|
||||
{
|
||||
chunks.Add(currentChunk.Trim());
|
||||
}
|
||||
currentChunk = sentence;
|
||||
}
|
||||
}
|
||||
|
||||
if (!string.IsNullOrEmpty(currentChunk))
|
||||
{
|
||||
chunks.Add(currentChunk.Trim());
|
||||
}
|
||||
}
|
||||
|
||||
// If no chunks were created, return the original text
|
||||
if (chunks.Count == 0)
|
||||
{
|
||||
chunks.Add(text.Trim());
|
||||
}
|
||||
|
||||
return chunks;
|
||||
}
|
||||
}
|
||||
}
|
||||
36
Cs_HMI/SubProject/SuperTonic/Properties/AssemblyInfo.cs
Normal file
36
Cs_HMI/SubProject/SuperTonic/Properties/AssemblyInfo.cs
Normal file
@@ -0,0 +1,36 @@
|
||||
using System.Reflection;
|
||||
using System.Runtime.CompilerServices;
|
||||
using System.Runtime.InteropServices;
|
||||
|
||||
// 어셈블리에 대한 일반 정보는 다음 특성 집합을 통해
|
||||
// 제어됩니다. 어셈블리와 관련된 정보를 수정하려면
|
||||
// 이러한 특성 값을 변경하세요.
|
||||
[assembly: AssemblyTitle("ClassLibrary1")]
|
||||
[assembly: AssemblyDescription("")]
|
||||
[assembly: AssemblyConfiguration("")]
|
||||
[assembly: AssemblyCompany("")]
|
||||
[assembly: AssemblyProduct("ClassLibrary1")]
|
||||
[assembly: AssemblyCopyright("Copyright © 2025")]
|
||||
[assembly: AssemblyTrademark("")]
|
||||
[assembly: AssemblyCulture("")]
|
||||
|
||||
// ComVisible을 false로 설정하면 이 어셈블리의 형식이 COM 구성 요소에
|
||||
// 표시되지 않습니다. COM에서 이 어셈블리의 형식에 액세스하려면
|
||||
// 해당 형식에 대해 ComVisible 특성을 true로 설정하세요.
|
||||
[assembly: ComVisible(false)]
|
||||
|
||||
// 이 프로젝트가 COM에 노출되는 경우 다음 GUID는 typelib의 ID를 나타냅니다.
|
||||
[assembly: Guid("19675e19-eb91-493e-88c3-32b3c094b749")]
|
||||
|
||||
// 어셈블리의 버전 정보는 다음 네 가지 값으로 구성됩니다.
|
||||
//
|
||||
// 주 버전
|
||||
// 부 버전
|
||||
// 빌드 번호
|
||||
// 수정 버전
|
||||
//
|
||||
// 모든 값을 지정하거나 아래와 같이 '*'를 사용하여 빌드 번호 및 수정 번호를
|
||||
// 기본값으로 할 수 있습니다.
|
||||
// [assembly: AssemblyVersion("1.0.*")]
|
||||
[assembly: AssemblyVersion("1.0.0.0")]
|
||||
[assembly: AssemblyFileVersion("1.0.0.0")]
|
||||
126
Cs_HMI/SubProject/SuperTonic/Supertonic.Netfx48.csproj
Normal file
126
Cs_HMI/SubProject/SuperTonic/Supertonic.Netfx48.csproj
Normal file
@@ -0,0 +1,126 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<Project ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
|
||||
<Import Project="..\csharp\packages\Microsoft.ML.OnnxRuntime.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.props" Condition="Exists('..\csharp\packages\Microsoft.ML.OnnxRuntime.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.props')" />
|
||||
<Import Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props" Condition="Exists('$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props')" />
|
||||
<PropertyGroup>
|
||||
<Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
|
||||
<Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
|
||||
<ProjectGuid>{19675E19-EB91-493E-88C3-32B3C094B749}</ProjectGuid>
|
||||
<OutputType>Exe</OutputType>
|
||||
<AppDesignerFolder>Properties</AppDesignerFolder>
|
||||
<RootNamespace>Supertonic</RootNamespace>
|
||||
<AssemblyName>Supertonic.Net48</AssemblyName>
|
||||
<TargetFrameworkVersion>v4.8</TargetFrameworkVersion>
|
||||
<FileAlignment>512</FileAlignment>
|
||||
<Deterministic>true</Deterministic>
|
||||
<NuGetPackageImportStamp>
|
||||
</NuGetPackageImportStamp>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
|
||||
<DebugSymbols>true</DebugSymbols>
|
||||
<DebugType>full</DebugType>
|
||||
<Optimize>false</Optimize>
|
||||
<OutputPath>bin\Debug\</OutputPath>
|
||||
<DefineConstants>DEBUG;TRACE</DefineConstants>
|
||||
<ErrorReport>prompt</ErrorReport>
|
||||
<WarningLevel>4</WarningLevel>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
|
||||
<DebugType>pdbonly</DebugType>
|
||||
<Optimize>true</Optimize>
|
||||
<OutputPath>bin\Release\</OutputPath>
|
||||
<DefineConstants>TRACE</DefineConstants>
|
||||
<ErrorReport>prompt</ErrorReport>
|
||||
<WarningLevel>4</WarningLevel>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup>
|
||||
<StartupObject>Supertonic.Program</StartupObject>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Debug|Win32'">
|
||||
<PlatformTarget>x64</PlatformTarget>
|
||||
<OutputPath>bin\Debug\</OutputPath>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Debug|x64'">
|
||||
<DebugSymbols>true</DebugSymbols>
|
||||
<OutputPath>bin\x64\Debug\</OutputPath>
|
||||
<DefineConstants>DEBUG;TRACE</DefineConstants>
|
||||
<DebugType>full</DebugType>
|
||||
<PlatformTarget>x64</PlatformTarget>
|
||||
<ErrorReport>prompt</ErrorReport>
|
||||
<CodeAnalysisRuleSet>MinimumRecommendedRules.ruleset</CodeAnalysisRuleSet>
|
||||
<Prefer32Bit>true</Prefer32Bit>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Release|x64'">
|
||||
<OutputPath>bin\x64\Release\</OutputPath>
|
||||
<DefineConstants>TRACE</DefineConstants>
|
||||
<Optimize>true</Optimize>
|
||||
<DebugType>pdbonly</DebugType>
|
||||
<PlatformTarget>x64</PlatformTarget>
|
||||
<ErrorReport>prompt</ErrorReport>
|
||||
<CodeAnalysisRuleSet>MinimumRecommendedRules.ruleset</CodeAnalysisRuleSet>
|
||||
<Prefer32Bit>true</Prefer32Bit>
|
||||
</PropertyGroup>
|
||||
<ItemGroup>
|
||||
<Reference Include="Microsoft.Bcl.AsyncInterfaces, Version=10.0.0.1, Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51, processorArchitecture=MSIL">
|
||||
<HintPath>..\csharp\packages\Microsoft.Bcl.AsyncInterfaces.10.0.1\lib\net462\Microsoft.Bcl.AsyncInterfaces.dll</HintPath>
|
||||
</Reference>
|
||||
<Reference Include="Microsoft.ML.OnnxRuntime, Version=1.23.2.0, Culture=neutral, PublicKeyToken=f27f157f0a5b7bb6, processorArchitecture=MSIL">
|
||||
<HintPath>..\csharp\packages\Microsoft.ML.OnnxRuntime.Managed.1.23.2\lib\netstandard2.0\Microsoft.ML.OnnxRuntime.dll</HintPath>
|
||||
</Reference>
|
||||
<Reference Include="System" />
|
||||
<Reference Include="System.Buffers, Version=4.0.5.0, Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51, processorArchitecture=MSIL">
|
||||
<HintPath>..\csharp\packages\System.Buffers.4.6.1\lib\net462\System.Buffers.dll</HintPath>
|
||||
</Reference>
|
||||
<Reference Include="System.Core" />
|
||||
<Reference Include="System.IO.Pipelines, Version=10.0.0.1, Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51, processorArchitecture=MSIL">
|
||||
<HintPath>..\csharp\packages\System.IO.Pipelines.10.0.1\lib\net462\System.IO.Pipelines.dll</HintPath>
|
||||
</Reference>
|
||||
<Reference Include="System.Memory, Version=4.0.5.0, Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51, processorArchitecture=MSIL">
|
||||
<HintPath>..\csharp\packages\System.Memory.4.6.3\lib\net462\System.Memory.dll</HintPath>
|
||||
</Reference>
|
||||
<Reference Include="System.Numerics" />
|
||||
<Reference Include="System.Numerics.Vectors, Version=4.1.6.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL">
|
||||
<HintPath>..\csharp\packages\System.Numerics.Vectors.4.6.1\lib\net462\System.Numerics.Vectors.dll</HintPath>
|
||||
</Reference>
|
||||
<Reference Include="System.Runtime.CompilerServices.Unsafe, Version=6.0.3.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL">
|
||||
<HintPath>..\csharp\packages\System.Runtime.CompilerServices.Unsafe.6.1.2\lib\net462\System.Runtime.CompilerServices.Unsafe.dll</HintPath>
|
||||
</Reference>
|
||||
<Reference Include="System.Text.Encodings.Web, Version=10.0.0.1, Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51, processorArchitecture=MSIL">
|
||||
<HintPath>..\csharp\packages\System.Text.Encodings.Web.10.0.1\lib\net462\System.Text.Encodings.Web.dll</HintPath>
|
||||
</Reference>
|
||||
<Reference Include="System.Text.Json, Version=10.0.0.1, Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51, processorArchitecture=MSIL">
|
||||
<HintPath>..\csharp\packages\System.Text.Json.10.0.1\lib\net462\System.Text.Json.dll</HintPath>
|
||||
</Reference>
|
||||
<Reference Include="System.Threading.Tasks.Extensions, Version=4.2.4.0, Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51, processorArchitecture=MSIL">
|
||||
<HintPath>..\csharp\packages\System.Threading.Tasks.Extensions.4.6.3\lib\net462\System.Threading.Tasks.Extensions.dll</HintPath>
|
||||
</Reference>
|
||||
<Reference Include="System.Xml.Linq" />
|
||||
<Reference Include="System.Data.DataSetExtensions" />
|
||||
<Reference Include="Microsoft.CSharp" />
|
||||
<Reference Include="System.Data" />
|
||||
<Reference Include="System.Net.Http" />
|
||||
<Reference Include="System.Xml" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<Compile Include="ExampleONNX.cs" />
|
||||
<Compile Include="Helper.cs" />
|
||||
<Compile Include="Properties\AssemblyInfo.cs" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<None Include="app.config" />
|
||||
<None Include="packages.config" />
|
||||
</ItemGroup>
|
||||
<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
|
||||
<Import Project="..\csharp\packages\Microsoft.ML.OnnxRuntime.Managed.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.Managed.targets" Condition="Exists('..\csharp\packages\Microsoft.ML.OnnxRuntime.Managed.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.Managed.targets')" />
|
||||
<Target Name="EnsureNuGetPackageBuildImports" BeforeTargets="PrepareForBuild">
|
||||
<PropertyGroup>
|
||||
<ErrorText>이 프로젝트는 이 컴퓨터에 없는 NuGet 패키지를 참조합니다. 해당 패키지를 다운로드하려면 NuGet 패키지 복원을 사용하십시오. 자세한 내용은 http://go.microsoft.com/fwlink/?LinkID=322105를 참조하십시오. 누락된 파일은 {0}입니다.</ErrorText>
|
||||
</PropertyGroup>
|
||||
<Error Condition="!Exists('..\csharp\packages\Microsoft.ML.OnnxRuntime.Managed.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.Managed.targets')" Text="$([System.String]::Format('$(ErrorText)', '..\csharp\packages\Microsoft.ML.OnnxRuntime.Managed.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.Managed.targets'))" />
|
||||
<Error Condition="!Exists('..\csharp\packages\Microsoft.ML.OnnxRuntime.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.props')" Text="$([System.String]::Format('$(ErrorText)', '..\csharp\packages\Microsoft.ML.OnnxRuntime.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.props'))" />
|
||||
<Error Condition="!Exists('..\csharp\packages\Microsoft.ML.OnnxRuntime.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.targets')" Text="$([System.String]::Format('$(ErrorText)', '..\csharp\packages\Microsoft.ML.OnnxRuntime.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.targets'))" />
|
||||
<Error Condition="!Exists('..\csharp\packages\System.ValueTuple.4.6.1\build\net471\System.ValueTuple.targets')" Text="$([System.String]::Format('$(ErrorText)', '..\csharp\packages\System.ValueTuple.4.6.1\build\net471\System.ValueTuple.targets'))" />
|
||||
</Target>
|
||||
<Import Project="..\csharp\packages\Microsoft.ML.OnnxRuntime.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.targets" Condition="Exists('..\csharp\packages\Microsoft.ML.OnnxRuntime.1.23.2\build\netstandard2.0\Microsoft.ML.OnnxRuntime.targets')" />
|
||||
<Import Project="..\csharp\packages\System.ValueTuple.4.6.1\build\net471\System.ValueTuple.targets" Condition="Exists('..\csharp\packages\System.ValueTuple.4.6.1\build\net471\System.ValueTuple.targets')" />
|
||||
</Project>
|
||||
49
Cs_HMI/SubProject/SuperTonic/Supertonic.Netfx48.sln
Normal file
49
Cs_HMI/SubProject/SuperTonic/Supertonic.Netfx48.sln
Normal file
@@ -0,0 +1,49 @@
|
||||
|
||||
Microsoft Visual Studio Solution File, Format Version 12.00
|
||||
# Visual Studio Express 15 for Windows Desktop
|
||||
VisualStudioVersion = 15.0.36324.19
|
||||
MinimumVisualStudioVersion = 10.0.40219.1
|
||||
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Supertonic.Netfx48", "Supertonic.Netfx48.csproj", "{19675E19-EB91-493E-88C3-32B3C094B749}"
|
||||
EndProject
|
||||
Global
|
||||
GlobalSection(SolutionConfigurationPlatforms) = preSolution
|
||||
Debug|Any CPU = Debug|Any CPU
|
||||
Debug|ARM = Debug|ARM
|
||||
Debug|ARM64 = Debug|ARM64
|
||||
Debug|x64 = Debug|x64
|
||||
Debug|x86 = Debug|x86
|
||||
Release|Any CPU = Release|Any CPU
|
||||
Release|ARM = Release|ARM
|
||||
Release|ARM64 = Release|ARM64
|
||||
Release|x64 = Release|x64
|
||||
Release|x86 = Release|x86
|
||||
EndGlobalSection
|
||||
GlobalSection(ProjectConfigurationPlatforms) = postSolution
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Debug|Any CPU.Build.0 = Debug|Any CPU
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Debug|ARM.ActiveCfg = Debug|ARM
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Debug|ARM.Build.0 = Debug|ARM
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Debug|ARM64.ActiveCfg = Debug|ARM64
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Debug|ARM64.Build.0 = Debug|ARM64
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Debug|x64.ActiveCfg = Debug|x64
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Debug|x64.Build.0 = Debug|x64
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Debug|x86.ActiveCfg = Debug|Win32
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Debug|x86.Build.0 = Debug|Win32
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Release|Any CPU.ActiveCfg = Release|Any CPU
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Release|Any CPU.Build.0 = Release|Any CPU
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Release|ARM.ActiveCfg = Release|ARM
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Release|ARM.Build.0 = Release|ARM
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Release|ARM64.ActiveCfg = Release|ARM64
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Release|ARM64.Build.0 = Release|ARM64
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Release|x64.ActiveCfg = Release|x64
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Release|x64.Build.0 = Release|x64
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Release|x86.ActiveCfg = Release|Win32
|
||||
{19675E19-EB91-493E-88C3-32B3C094B749}.Release|x86.Build.0 = Release|Win32
|
||||
EndGlobalSection
|
||||
GlobalSection(SolutionProperties) = preSolution
|
||||
HideSolutionNode = FALSE
|
||||
EndGlobalSection
|
||||
GlobalSection(ExtensibilityGlobals) = postSolution
|
||||
SolutionGuid = {5F2E20C5-E704-4B99-8FE9-54394113916E}
|
||||
EndGlobalSection
|
||||
EndGlobal
|
||||
11
Cs_HMI/SubProject/SuperTonic/app.config
Normal file
11
Cs_HMI/SubProject/SuperTonic/app.config
Normal file
@@ -0,0 +1,11 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<configuration>
|
||||
<runtime>
|
||||
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
|
||||
<dependentAssembly>
|
||||
<assemblyIdentity name="System.Memory" publicKeyToken="cc7b13ffcd2ddd51" culture="neutral" />
|
||||
<bindingRedirect oldVersion="0.0.0.0-4.0.5.0" newVersion="4.0.5.0" />
|
||||
</dependentAssembly>
|
||||
</assemblyBinding>
|
||||
</runtime>
|
||||
</configuration>
|
||||
BIN
Cs_HMI/SubProject/SuperTonic/assets/onnx/duration_predictor.onnx
Normal file
BIN
Cs_HMI/SubProject/SuperTonic/assets/onnx/duration_predictor.onnx
Normal file
Binary file not shown.
BIN
Cs_HMI/SubProject/SuperTonic/assets/onnx/text_encoder.onnx
Normal file
BIN
Cs_HMI/SubProject/SuperTonic/assets/onnx/text_encoder.onnx
Normal file
Binary file not shown.
316
Cs_HMI/SubProject/SuperTonic/assets/onnx/tts.json
Normal file
316
Cs_HMI/SubProject/SuperTonic/assets/onnx/tts.json
Normal file
@@ -0,0 +1,316 @@
|
||||
{
|
||||
"tts_version": "v1.5.0",
|
||||
"split": "opensource-en",
|
||||
"ttl_ckpt_path": "unknown.pt",
|
||||
"dp_ckpt_path": "unknown.pt",
|
||||
"ae_ckpt_path": "unknown.pt",
|
||||
"ttl_train": "unknown",
|
||||
"dp_train": "unknown",
|
||||
"ae_train": "unknown",
|
||||
"ttl": {
|
||||
"latent_dim": 24,
|
||||
"chunk_compress_factor": 6,
|
||||
"batch_expander": {
|
||||
"n_batch_expand": 6
|
||||
},
|
||||
"normalizer": {
|
||||
"scale": 0.25
|
||||
},
|
||||
"text_encoder": {
|
||||
"char_dict_path": "resources/metadata/char_dict/opensource-en/char_dict.json",
|
||||
"text_embedder": {
|
||||
"char_dict_path": "resources/metadata/char_dict/opensource-en/char_dict.json",
|
||||
"char_emb_dim": 256
|
||||
},
|
||||
"convnext": {
|
||||
"idim": 256,
|
||||
"ksz": 5,
|
||||
"intermediate_dim": 1024,
|
||||
"num_layers": 6,
|
||||
"dilation_lst": [
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1
|
||||
]
|
||||
},
|
||||
"attn_encoder": {
|
||||
"hidden_channels": 256,
|
||||
"filter_channels": 1024,
|
||||
"n_heads": 4,
|
||||
"n_layers": 4,
|
||||
"p_dropout": 0.0
|
||||
},
|
||||
"proj_out": {
|
||||
"idim": 256,
|
||||
"odim": 256
|
||||
}
|
||||
},
|
||||
"flow_matching": {
|
||||
"sig_min": 0
|
||||
},
|
||||
"style_encoder": {
|
||||
"proj_in": {
|
||||
"ldim": 24,
|
||||
"chunk_compress_factor": 6,
|
||||
"odim": 256
|
||||
},
|
||||
"convnext": {
|
||||
"idim": 256,
|
||||
"ksz": 5,
|
||||
"intermediate_dim": 1024,
|
||||
"num_layers": 6,
|
||||
"dilation_lst": [
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1
|
||||
]
|
||||
},
|
||||
"style_token_layer": {
|
||||
"input_dim": 256,
|
||||
"n_style": 50,
|
||||
"style_key_dim": 256,
|
||||
"style_value_dim": 256,
|
||||
"prototype_dim": 256,
|
||||
"n_units": 256,
|
||||
"n_heads": 2
|
||||
}
|
||||
},
|
||||
"speech_prompted_text_encoder": {
|
||||
"text_dim": 256,
|
||||
"style_dim": 256,
|
||||
"n_units": 256,
|
||||
"n_heads": 2
|
||||
},
|
||||
"uncond_masker": {
|
||||
"prob_both_uncond": 0.04,
|
||||
"prob_text_uncond": 0.01,
|
||||
"std": 0.1,
|
||||
"text_dim": 256,
|
||||
"n_style": 50,
|
||||
"style_key_dim": 256,
|
||||
"style_value_dim": 256
|
||||
},
|
||||
"vector_field": {
|
||||
"proj_in": {
|
||||
"ldim": 24,
|
||||
"chunk_compress_factor": 6,
|
||||
"odim": 512
|
||||
},
|
||||
"time_encoder": {
|
||||
"time_dim": 64,
|
||||
"hdim": 256
|
||||
},
|
||||
"main_blocks": {
|
||||
"n_blocks": 4,
|
||||
"time_cond_layer": {
|
||||
"idim": 512,
|
||||
"time_dim": 64
|
||||
},
|
||||
"style_cond_layer": {
|
||||
"idim": 512,
|
||||
"style_dim": 256
|
||||
},
|
||||
"text_cond_layer": {
|
||||
"idim": 512,
|
||||
"text_dim": 256,
|
||||
"n_heads": 4,
|
||||
"use_residual": true,
|
||||
"rotary_base": 10000,
|
||||
"rotary_scale": 10
|
||||
},
|
||||
"convnext_0": {
|
||||
"idim": 512,
|
||||
"ksz": 5,
|
||||
"intermediate_dim": 1024,
|
||||
"num_layers": 4,
|
||||
"dilation_lst": [
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
8
|
||||
]
|
||||
},
|
||||
"convnext_1": {
|
||||
"idim": 512,
|
||||
"ksz": 5,
|
||||
"intermediate_dim": 1024,
|
||||
"num_layers": 1,
|
||||
"dilation_lst": [
|
||||
1
|
||||
]
|
||||
},
|
||||
"convnext_2": {
|
||||
"idim": 512,
|
||||
"ksz": 5,
|
||||
"intermediate_dim": 1024,
|
||||
"num_layers": 1,
|
||||
"dilation_lst": [
|
||||
1
|
||||
]
|
||||
}
|
||||
},
|
||||
"last_convnext": {
|
||||
"idim": 512,
|
||||
"ksz": 5,
|
||||
"intermediate_dim": 1024,
|
||||
"num_layers": 4,
|
||||
"dilation_lst": [
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1
|
||||
]
|
||||
},
|
||||
"proj_out": {
|
||||
"idim": 512,
|
||||
"chunk_compress_factor": 6,
|
||||
"ldim": 24
|
||||
}
|
||||
}
|
||||
},
|
||||
"ae": {
|
||||
"sample_rate": 44100,
|
||||
"n_delay": 0,
|
||||
"base_chunk_size": 512,
|
||||
"chunk_compress_factor": 1,
|
||||
"ldim": 24,
|
||||
"encoder": {
|
||||
"spec_processor": {
|
||||
"n_fft": 2048,
|
||||
"win_length": 2048,
|
||||
"hop_length": 512,
|
||||
"n_mels": 228,
|
||||
"sample_rate": 44100,
|
||||
"eps": 1e-05,
|
||||
"norm_mean": 0.0,
|
||||
"norm_std": 1.0
|
||||
},
|
||||
"ksz_init": 7,
|
||||
"ksz": 7,
|
||||
"num_layers": 10,
|
||||
"dilation_lst": [
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1
|
||||
],
|
||||
"intermediate_dim": 2048,
|
||||
"idim": 1253,
|
||||
"hdim": 512,
|
||||
"odim": 24
|
||||
},
|
||||
"decoder": {
|
||||
"ksz_init": 7,
|
||||
"ksz": 7,
|
||||
"num_layers": 10,
|
||||
"dilation_lst": [
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1
|
||||
],
|
||||
"intermediate_dim": 2048,
|
||||
"idim": 24,
|
||||
"hdim": 512,
|
||||
"head": {
|
||||
"idim": 512,
|
||||
"hdim": 2048,
|
||||
"odim": 512,
|
||||
"ksz": 3
|
||||
}
|
||||
}
|
||||
},
|
||||
"dp": {
|
||||
"latent_dim": 24,
|
||||
"chunk_compress_factor": 6,
|
||||
"normalizer": {
|
||||
"scale": 1.0
|
||||
},
|
||||
"sentence_encoder": {
|
||||
"char_emb_dim": 64,
|
||||
"char_dict_path": "resources/metadata/char_dict/opensource-en/char_dict.json",
|
||||
"text_embedder": {
|
||||
"char_dict_path": "resources/metadata/char_dict/opensource-en/char_dict.json",
|
||||
"char_emb_dim": 64
|
||||
},
|
||||
"convnext": {
|
||||
"idim": 64,
|
||||
"ksz": 5,
|
||||
"intermediate_dim": 256,
|
||||
"num_layers": 6,
|
||||
"dilation_lst": [
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1
|
||||
]
|
||||
},
|
||||
"attn_encoder": {
|
||||
"hidden_channels": 64,
|
||||
"filter_channels": 256,
|
||||
"n_heads": 2,
|
||||
"n_layers": 2,
|
||||
"p_dropout": 0.0
|
||||
},
|
||||
"proj_out": {
|
||||
"idim": 64,
|
||||
"odim": 64
|
||||
}
|
||||
},
|
||||
"style_encoder": {
|
||||
"proj_in": {
|
||||
"ldim": 24,
|
||||
"chunk_compress_factor": 6,
|
||||
"odim": 64
|
||||
},
|
||||
"convnext": {
|
||||
"idim": 64,
|
||||
"ksz": 5,
|
||||
"intermediate_dim": 256,
|
||||
"num_layers": 4,
|
||||
"dilation_lst": [
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1
|
||||
]
|
||||
},
|
||||
"style_token_layer": {
|
||||
"input_dim": 64,
|
||||
"n_style": 8,
|
||||
"style_key_dim": 0,
|
||||
"style_value_dim": 16,
|
||||
"prototype_dim": 64,
|
||||
"n_units": 64,
|
||||
"n_heads": 2
|
||||
}
|
||||
},
|
||||
"predictor": {
|
||||
"sentence_dim": 64,
|
||||
"n_style": 8,
|
||||
"style_dim": 16,
|
||||
"hdim": 128,
|
||||
"n_layer": 2
|
||||
}
|
||||
}
|
||||
}
|
||||
223
Cs_HMI/SubProject/SuperTonic/assets/onnx/tts.yml
Normal file
223
Cs_HMI/SubProject/SuperTonic/assets/onnx/tts.yml
Normal file
@@ -0,0 +1,223 @@
|
||||
tts_version: "v1.5.0"
|
||||
|
||||
split: "opensource-en"
|
||||
|
||||
ttl_ckpt_path: "unknown.pt"
|
||||
|
||||
dp_ckpt_path: "unknown.pt"
|
||||
|
||||
ae_ckpt_path: "unknown.pt"
|
||||
|
||||
ttl_train: "unknown"
|
||||
|
||||
dp_train: "unknown"
|
||||
|
||||
ae_train: "unknown"
|
||||
|
||||
ttl:
|
||||
latent_dim: 24
|
||||
chunk_compress_factor: 6
|
||||
batch_expander:
|
||||
n_batch_expand: 6
|
||||
normalizer:
|
||||
scale: 0.25
|
||||
text_encoder:
|
||||
char_dict_path: "resources/metadata/char_dict/opensource-en/char_dict.json"
|
||||
text_embedder:
|
||||
char_dict_path: "resources/metadata/char_dict/opensource-en/char_dict.json"
|
||||
char_emb_dim: 256
|
||||
convnext:
|
||||
idim: 256
|
||||
ksz: 5
|
||||
intermediate_dim: 1024
|
||||
num_layers: 6
|
||||
dilation_lst: [1, 1, 1, 1, 1, 1]
|
||||
attn_encoder:
|
||||
hidden_channels: 256
|
||||
filter_channels: 1024
|
||||
n_heads: 4
|
||||
n_layers: 4
|
||||
p_dropout: 0.0
|
||||
proj_out:
|
||||
idim: 256
|
||||
odim: 256
|
||||
flow_matching:
|
||||
sig_min: 0
|
||||
style_encoder:
|
||||
proj_in:
|
||||
ldim: 24
|
||||
chunk_compress_factor: 6
|
||||
odim: 256
|
||||
convnext:
|
||||
idim: 256
|
||||
ksz: 5
|
||||
intermediate_dim: 1024
|
||||
num_layers: 6
|
||||
dilation_lst: [1, 1, 1, 1, 1, 1]
|
||||
style_token_layer:
|
||||
input_dim: 256
|
||||
n_style: 50
|
||||
style_key_dim: 256
|
||||
style_value_dim: 256
|
||||
prototype_dim: 256
|
||||
n_units: 256
|
||||
n_heads: 2
|
||||
speech_prompted_text_encoder:
|
||||
text_dim: 256
|
||||
style_dim: 256
|
||||
n_units: 256
|
||||
n_heads: 2
|
||||
uncond_masker:
|
||||
prob_both_uncond: 0.04
|
||||
prob_text_uncond: 0.01
|
||||
std: 0.1
|
||||
text_dim: 256
|
||||
n_style: 50
|
||||
style_key_dim: 256
|
||||
style_value_dim: 256
|
||||
vector_field:
|
||||
proj_in:
|
||||
ldim: 24
|
||||
chunk_compress_factor: 6
|
||||
odim: 512
|
||||
time_encoder:
|
||||
time_dim: 64
|
||||
hdim: 256
|
||||
main_blocks:
|
||||
n_blocks: 4
|
||||
time_cond_layer:
|
||||
idim: 512
|
||||
time_dim: 64
|
||||
style_cond_layer:
|
||||
idim: 512
|
||||
style_dim: 256
|
||||
text_cond_layer:
|
||||
idim: 512
|
||||
text_dim: 256
|
||||
n_heads: 4
|
||||
use_residual: True
|
||||
rotary_base: 10000
|
||||
rotary_scale: 10
|
||||
convnext_0:
|
||||
idim: 512
|
||||
ksz: 5
|
||||
intermediate_dim: 1024
|
||||
num_layers: 4
|
||||
dilation_lst: [1, 2, 4, 8]
|
||||
convnext_1:
|
||||
idim: 512
|
||||
ksz: 5
|
||||
intermediate_dim: 1024
|
||||
num_layers: 1
|
||||
dilation_lst: [1]
|
||||
convnext_2:
|
||||
idim: 512
|
||||
ksz: 5
|
||||
intermediate_dim: 1024
|
||||
num_layers: 1
|
||||
dilation_lst: [1]
|
||||
last_convnext:
|
||||
idim: 512
|
||||
ksz: 5
|
||||
intermediate_dim: 1024
|
||||
num_layers: 4
|
||||
dilation_lst: [1, 1, 1, 1]
|
||||
proj_out:
|
||||
idim: 512
|
||||
chunk_compress_factor: 6
|
||||
ldim: 24
|
||||
|
||||
ae:
|
||||
sample_rate: 44100
|
||||
n_delay: 0
|
||||
base_chunk_size: 512
|
||||
chunk_compress_factor: 1
|
||||
ldim: 24
|
||||
encoder:
|
||||
spec_processor:
|
||||
n_fft: 2048
|
||||
win_length: 2048
|
||||
hop_length: 512
|
||||
n_mels: 228
|
||||
sample_rate: 44100
|
||||
eps: 1e-05
|
||||
norm_mean: 0.0
|
||||
norm_std: 1.0
|
||||
ksz_init: 7
|
||||
ksz: 7
|
||||
num_layers: 10
|
||||
dilation_lst: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
||||
intermediate_dim: 2048
|
||||
idim: 1253
|
||||
hdim: 512
|
||||
odim: 24
|
||||
decoder:
|
||||
ksz_init: 7
|
||||
ksz: 7
|
||||
num_layers: 10
|
||||
dilation_lst: [1, 2, 4, 1, 2, 4, 1, 1, 1, 1]
|
||||
intermediate_dim: 2048
|
||||
idim: 24
|
||||
hdim: 512
|
||||
head:
|
||||
idim: 512
|
||||
hdim: 2048
|
||||
odim: 512
|
||||
ksz: 3
|
||||
|
||||
dp:
|
||||
latent_dim: 24
|
||||
chunk_compress_factor: 6
|
||||
normalizer:
|
||||
scale: 1.0
|
||||
sentence_encoder:
|
||||
char_emb_dim: 64
|
||||
char_dict_path: "resources/metadata/char_dict/opensource-en/char_dict.json"
|
||||
text_embedder:
|
||||
char_dict_path: "resources/metadata/char_dict/opensource-en/char_dict.json"
|
||||
char_emb_dim: 64
|
||||
convnext:
|
||||
idim: 64
|
||||
ksz: 5
|
||||
intermediate_dim: 256
|
||||
num_layers: 6
|
||||
dilation_lst: [1, 1, 1, 1, 1, 1]
|
||||
attn_encoder:
|
||||
hidden_channels: 64
|
||||
filter_channels: 256
|
||||
n_heads: 2
|
||||
n_layers: 2
|
||||
p_dropout: 0.0
|
||||
proj_out:
|
||||
idim: 64
|
||||
odim: 64
|
||||
style_encoder:
|
||||
proj_in:
|
||||
ldim: 24
|
||||
chunk_compress_factor: 6
|
||||
odim: 64
|
||||
convnext:
|
||||
idim: 64
|
||||
ksz: 5
|
||||
intermediate_dim: 256
|
||||
num_layers: 4
|
||||
dilation_lst: [1, 1, 1, 1]
|
||||
style_token_layer:
|
||||
input_dim: 64
|
||||
n_style: 8
|
||||
style_key_dim: 0
|
||||
style_value_dim: 16
|
||||
prototype_dim: 64
|
||||
n_units: 64
|
||||
n_heads: 2
|
||||
predictor:
|
||||
sentence_dim: 64
|
||||
n_style: 8
|
||||
style_dim: 16
|
||||
hdim: 128
|
||||
n_layer: 2
|
||||
|
||||
unicode_indexer_path: "/data/public/model/supertonic/tts/v1.5.0/opensource-en/onnx/unicode_indexer.npy"
|
||||
unicode_indexer_json_path: "/data/public/model/supertonic/tts/v1.5.0/opensource-en/onnx/unicode_indexer.json"
|
||||
window_path: "/data/public/model/supertonic/tts/v1.5.0/opensource-en/onnx/window.json"
|
||||
filter_bank_path: "/data/public/model/supertonic/tts/v1.5.0/opensource-en/onnx/filter_bank.json"
|
||||
File diff suppressed because one or more lines are too long
BIN
Cs_HMI/SubProject/SuperTonic/assets/onnx/vector_estimator.onnx
Normal file
BIN
Cs_HMI/SubProject/SuperTonic/assets/onnx/vector_estimator.onnx
Normal file
Binary file not shown.
BIN
Cs_HMI/SubProject/SuperTonic/assets/onnx/vocoder.onnx
Normal file
BIN
Cs_HMI/SubProject/SuperTonic/assets/onnx/vocoder.onnx
Normal file
Binary file not shown.
13076
Cs_HMI/SubProject/SuperTonic/assets/voice_styles/F1.json
Normal file
13076
Cs_HMI/SubProject/SuperTonic/assets/voice_styles/F1.json
Normal file
File diff suppressed because it is too large
Load Diff
13076
Cs_HMI/SubProject/SuperTonic/assets/voice_styles/F2.json
Normal file
13076
Cs_HMI/SubProject/SuperTonic/assets/voice_styles/F2.json
Normal file
File diff suppressed because it is too large
Load Diff
13076
Cs_HMI/SubProject/SuperTonic/assets/voice_styles/M1.json
Normal file
13076
Cs_HMI/SubProject/SuperTonic/assets/voice_styles/M1.json
Normal file
File diff suppressed because it is too large
Load Diff
13076
Cs_HMI/SubProject/SuperTonic/assets/voice_styles/M2.json
Normal file
13076
Cs_HMI/SubProject/SuperTonic/assets/voice_styles/M2.json
Normal file
File diff suppressed because it is too large
Load Diff
15
Cs_HMI/SubProject/SuperTonic/packages.config
Normal file
15
Cs_HMI/SubProject/SuperTonic/packages.config
Normal file
@@ -0,0 +1,15 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<packages>
|
||||
<package id="Microsoft.Bcl.AsyncInterfaces" version="10.0.1" targetFramework="net48" />
|
||||
<package id="Microsoft.ML.OnnxRuntime" version="1.23.2" targetFramework="net48" />
|
||||
<package id="Microsoft.ML.OnnxRuntime.Managed" version="1.23.2" targetFramework="net48" />
|
||||
<package id="System.Buffers" version="4.6.1" targetFramework="net48" />
|
||||
<package id="System.IO.Pipelines" version="10.0.1" targetFramework="net48" />
|
||||
<package id="System.Memory" version="4.6.3" targetFramework="net48" />
|
||||
<package id="System.Numerics.Vectors" version="4.6.1" targetFramework="net48" />
|
||||
<package id="System.Runtime.CompilerServices.Unsafe" version="6.1.2" targetFramework="net48" />
|
||||
<package id="System.Text.Encodings.Web" version="10.0.1" targetFramework="net48" />
|
||||
<package id="System.Text.Json" version="10.0.1" targetFramework="net48" />
|
||||
<package id="System.Threading.Tasks.Extensions" version="4.6.3" targetFramework="net48" />
|
||||
<package id="System.ValueTuple" version="4.6.1" targetFramework="net48" />
|
||||
</packages>
|
||||
Reference in New Issue
Block a user