Initial commit: ROW Client source code

Game client codebase including:
- CharacterActionControl: Character and creature management
- GlobalScript: Network, items, skills, quests, utilities
- RYLClient: Main client application with GUI and event handlers
- Engine: 3D rendering engine (RYLGL)
- MemoryManager: Custom memory allocation
- Library: Third-party dependencies (DirectX, boost, etc.)
- Tools: Development utilities

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
2025-11-29 16:24:34 +09:00
commit e067522598
5135 changed files with 1745744 additions and 0 deletions

View File

@@ -0,0 +1,56 @@
#include "../Include/CollisionEllipsoidHelper.h"
namespace CrossM{
namespace Scene{
CCollisionEllipsoidHelper::CCollisionEllipsoidHelper()
{
m_vEllipoidCenter.SetValue(0,0,0);
m_vEllipsoidRaius.SetValue(1,1,1);
m_fHeightBias = 0.0f;
}
CCollisionEllipsoidHelper::~CCollisionEllipsoidHelper()
{
}
void CCollisionEllipsoidHelper::SetEllipsoidRadius(const Math::VECTOR3& vRadius)
{
m_vEllipsoidRaius = vRadius;
}
void CCollisionEllipsoidHelper::SetHeightBias(float f)
{
m_fHeightBias = f;
}
void CCollisionEllipsoidHelper::SetEllipsoidCenter(const Math::VECTOR3& vCenter)
{
m_vEllipoidCenter = vCenter;
}
void CCollisionEllipsoidHelper::SetPosition(const Math::VECTOR3& vPos)
{
m_vEllipoidCenter.SetValue(vPos.x, vPos.y-m_fHeightBias, vPos.z);
}
const Math::VECTOR3& CCollisionEllipsoidHelper::GetEllipsoidRadius()
{
return m_vEllipsoidRaius;
}
const Math::VECTOR3& CCollisionEllipsoidHelper::GetEllipsoidCenter()
{
return m_vEllipoidCenter;
}
Math::VECTOR3 CCollisionEllipsoidHelper::GetPosition()
{
return Math::VECTOR3(m_vEllipoidCenter.x, m_vEllipoidCenter.y+m_fHeightBias, m_vEllipoidCenter.z);
}
}}

View File

@@ -0,0 +1,419 @@
#include "../Include/MathUtil.h"
#include <algorithm>
namespace CrossM{
namespace Math{
// <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> AABB <20>ȿ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>ԵǴ<D4B5><C7B4><EFBFBD> <20>˻<EFBFBD>
bool IsTriangleInAabb(const VECTOR3& vAabbMin, const VECTOR3& vAabbMax, const VECTOR3& vTri0, const VECTOR3& vTri1, const VECTOR3& vTri2)
{
if (vAabbMin.x <= vTri0.x && vTri0.x <= vAabbMax.x &&
vAabbMin.y <= vTri0.y && vTri0.y <= vAabbMax.y &&
vAabbMin.z <= vTri0.z && vTri0.z <= vAabbMax.z &&
vAabbMin.x <= vTri1.x && vTri1.x <= vAabbMax.x &&
vAabbMin.y <= vTri1.y && vTri1.y <= vAabbMax.y &&
vAabbMin.z <= vTri1.z && vTri1.z <= vAabbMax.z &&
vAabbMin.x <= vTri2.x && vTri2.x <= vAabbMax.x &&
vAabbMin.y <= vTri2.y && vTri2.y <= vAabbMax.y &&
vAabbMin.z <= vTri2.z && vTri2.z <= vAabbMax.z)
{
return true;
}
return false;
}
// <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> AABB <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>˻<EFBFBD>
bool CheckAabbTriangleIntersection(const VECTOR3& vAabbMin, const VECTOR3& vAabbMax, const VECTOR3& vTri0, const VECTOR3& vTri1, const VECTOR3& vTri2)
{
// Separation of Axes <20><> <20><><EFBFBD><EFBFBD> AABB - triangle intersection test <20><><EFBFBD><EFBFBD>
// 6 <20><20><><EFBFBD><EFBFBD> AABB <20><> <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> projection <20><> <20><>, <20><><EFBFBD><EFBFBD> <20><>ġ<EFBFBD><C4A1><EFBFBD><EFBFBD> <20><><EFBFBD>θ<EFBFBD> Ȯ<><C8AE><EFBFBD>Ѵ<EFBFBD>
// <20><><EFBFBD><EFBFBD> <20><20><><EFBFBD><EFBFBD> <20><>ġ<EFBFBD><C4A1> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>°<EFBFBD><C2B0>̰<EFBFBD>, <20><> <20><20><><EFBFBD>ؼ<EFBFBD><D8BC><EFBFBD><EFBFBD><EFBFBD> <20><>ġ<EFBFBD><C4A1> <20>ʴ´ٸ<C2B4> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>ʴ<EFBFBD> <20><><EFBFBD>̴<EFBFBD>
float fBoxProjectionMin, fBoxProjectionMax;
float fTriProjectionMin, fTriProjectionMax;
// AABB <20><> <20><> <20><20><><EFBFBD><EFBFBD> projection <20><> <20>˻<EFBFBD>
// X <20><>
fBoxProjectionMin = vAabbMin.x;
fBoxProjectionMax = vAabbMax.x;
fTriProjectionMin = std::min(vTri0.x, std::min(vTri1.x, vTri2.x));
fTriProjectionMax = std::max(vTri0.x, std::max(vTri1.x, vTri2.x));
if (false == IsRangeOverlap(fTriProjectionMin, fTriProjectionMax, fBoxProjectionMin, fBoxProjectionMax))
{
return false;
}
// Y <20><>
fBoxProjectionMin = vAabbMin.y;
fBoxProjectionMax = vAabbMax.y;
fTriProjectionMin = std::min(vTri0.y, std::min(vTri1.y, vTri2.y));
fTriProjectionMax = std::max(vTri0.y, std::max(vTri1.y, vTri2.y));
if (false == IsRangeOverlap(fTriProjectionMin, fTriProjectionMax, fBoxProjectionMin, fBoxProjectionMax))
{
return false;
}
// Z <20><>
fBoxProjectionMin = vAabbMin.z;
fBoxProjectionMax = vAabbMax.z;
fTriProjectionMin = std::min(vTri0.z, std::min(vTri1.z, vTri2.z));
fTriProjectionMax = std::max(vTri0.z, std::max(vTri1.z, vTri2.z));
if (false == IsRangeOverlap(fTriProjectionMin, fTriProjectionMax, fBoxProjectionMin, fBoxProjectionMax))
{
return false;
}
// <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20><> <20><> <20><20><><EFBFBD><EFBFBD> projection <20><> <20>˻<EFBFBD>
VECTOR3 avAxis[3]; // <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20><> <20>𼭸<EFBFBD>
Math::Subtract(avAxis[0], vTri1, vTri0);
Math::Subtract(avAxis[1], vTri2, vTri0);
Math::Subtract(avAxis[2], vTri2, vTri1);
// <20><EFBFBD><EFB0A2> <20><> <20><><EFBFBD><EFBFBD> <20>࿡ projection <20><> <20><>
float fProjectionTri0, fProjectionTri1, fProjectionTri2;
for (int i = 0; i < 3; ++i)
{
VECTOR3& vAxis = avAxis[i];
// AABB <20><> max/min <20><><EFBFBD><EFBFBD> xyz <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>ִ<EFBFBD>/<2F>ּҰ<D6BC><D2B0>̹Ƿ<CCB9>,
// axis <20><> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ʈ<EFBFBD><C6AE> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>ִ밪<D6B4><EBB0AA> <20><><EFBFBD>Ϸ<EFBFBD><CFB7><EFBFBD>
// x,y,z <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> ū <20><> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>ϸ<EFBFBD> <20>ȴ<EFBFBD>.
// (<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> AABB <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> xyz <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>ִ<EFBFBD>/<2F>ּҰ<D6BC><D2B0><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>̹Ƿ<CCB9>,
// x,y,z <20><> <20><><EFBFBD><EFBFBD> <20><><EFBFBD>Ƿ<EFBFBD> <20>ִ<EFBFBD>/<2F>ּҸ<D6BC> <20><><EFBFBD><EFBFBD><EFBFBD>Ѵ<EFBFBD> <20>ص<EFBFBD> <20><><EFBFBD>h <20><> <20>ȿ<EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD>ԵǴ<D4B5> <20><><EFBFBD><EFBFBD><EFBFBD>̴<EFBFBD>.)
fBoxProjectionMin =
((vAxis.x > 0) ? vAabbMin.x : vAabbMax.x) * vAxis.x +
((vAxis.y > 0) ? vAabbMin.y : vAabbMax.y) * vAxis.y +
((vAxis.z > 0) ? vAabbMin.z : vAabbMax.z) * vAxis.z;
fBoxProjectionMax =
((vAxis.x > 0) ? vAabbMax.x : vAabbMin.x) * vAxis.x +
((vAxis.y > 0) ? vAabbMax.y : vAabbMin.y) * vAxis.y +
((vAxis.z > 0) ? vAabbMax.z : vAabbMin.z) * vAxis.z;
fProjectionTri0 = Math::DotProduct(vTri0, vAxis);
fProjectionTri1 = Math::DotProduct(vTri1, vAxis);
fProjectionTri2 = Math::DotProduct(vTri2, vAxis);
fTriProjectionMin = std::min(fProjectionTri0, std::min(fProjectionTri1, fProjectionTri2));
fTriProjectionMax = std::max(fProjectionTri0, std::max(fProjectionTri1, fProjectionTri2));
if (false == IsRangeOverlap(fTriProjectionMin, fTriProjectionMax, fBoxProjectionMin, fBoxProjectionMax))
{
return false;
}
}
return true;
}
// <20><> AABB <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>˻<EFBFBD>
bool CheckAabbAabbIntersection(const VECTOR3& vAabb1Min, const VECTOR3& vAabb1Max, const VECTOR3& vAabb2Min, const VECTOR3& vAabb2Max)
{
if (false ==IsRangeOverlap(vAabb1Min.x, vAabb1Max.x, vAabb2Min.x, vAabb2Max.x)) return false;
if (false ==IsRangeOverlap(vAabb1Min.y, vAabb1Max.y, vAabb2Min.y, vAabb2Max.y)) return false;
if (false ==IsRangeOverlap(vAabb1Min.z, vAabb1Max.z, vAabb2Min.z, vAabb2Max.z)) return false;
return true;
}
// CheckTriangleSweepingSphereCollision <20><> <20>μ<EFBFBD> <20>Լ<EFBFBD>.
// ax^2 + bx + c <20><> <20><> <20><> min~max <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20>ظ<EFBFBD> <20><>ȯ<EFBFBD>Ѵ<EFBFBD>. <20><><EFBFBD><EFBFBD><EFBFBD>ϴ<EFBFBD> <20>ذ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> false <20><>ȯ
static bool GetLowestRootInRange(const float a, const float b, const float c, const float fMinRoot, const float fMaxRoot, float& fRoot)
{
// <20>Ǽ<EFBFBD><C7BC>ذ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>ϴ<EFBFBD><CFB4><EFBFBD> <20>Ǻ<EFBFBD><C7BA><EFBFBD> <20><><EFBFBD><EFBFBD>
float fDeterminant = b*b - 4.0f*a*c;
// <20>Ǽ<EFBFBD><C7BC>ذ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD>
if (fDeterminant < 0.0f) return false;
// <20>ΰ<EFBFBD><CEB0><EFBFBD> <20>ظ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>Ѵ<EFBFBD>
float fSqrtD = sqrtf(fDeterminant);
float r1 = (-b - fSqrtD) / (2*a);
float r2 = (-b + fSqrtD) / (2*a);
// r1 < r2 <20><> ũ<><20>ǵ<EFBFBD><C7B5><EFBFBD> <20><><EFBFBD><EFBFBD>
if (r1 > r2) std::swap(r1, r2);
// <20><><EFBFBD><EFBFBD><EFBFBD>ʺ<EFBFBD><CABA><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>Ǻ<EFBFBD><C7BA><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϰ<EFBFBD><CFB0><EFBFBD> <20>طμ<D8B7> <20><><EFBFBD><EFBFBD>
if (r1 > fMinRoot && r1 < fMaxRoot)
{
fRoot = r1;
return true;
}
// <20><><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, ū <20><> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>˻<EFBFBD><CBBB>Ѵ<EFBFBD>
if (r2 > fMinRoot && r2 < fMaxRoot)
{
fRoot = r2;
return true;
}
return false;
}
bool CheckTriangleSweepingSphereCollision(float &fOutT, VECTOR3& vOutContactPoint, bool& bOutContactInsideTriangle, const TriangSweepingSphere& triAndSphere)
{
// <20><EFBFBD><E0B0A3> alias
const Math::VECTOR3 &vBasePoint = triAndSphere.m_vSphereSweepStart;
const Math::VECTOR3 &vTri0 = triAndSphere.m_vTri0;
const Math::VECTOR3 &vTri1 = triAndSphere.m_vTri1;
const Math::VECTOR3 &vTri2 = triAndSphere.m_vTri2;
const Math::VECTOR3 &vPath = triAndSphere.m_vSphereSweepPath;
// <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20><> <20>𼭸<EFBFBD>
Math::VECTOR3 vTriEdge01, vTriEdge02, vTriEdge12;
// <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>ϴ<EFBFBD> <20><><EFBFBD><EFBFBD>. <20><><EFBFBD><EFBFBD> plane Ŭ<><C5AC><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><>
Math::VECTOR3 vTriPlaneNormal;
float fTriPlaneConstant;
// <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20><> <20>𼭸<EFBFBD> <20><><EFBFBD>͸<EFBFBD> <20><><EFBFBD>ϰ<EFBFBD>..
Math::Subtract(vTriEdge01, vTri1, vTri0);
Math::Subtract(vTriEdge02, vTri2, vTri0);
Math::Subtract(vTriEdge12, vTri2, vTri1);
// <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20><><EFBFBD>Ե<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>Ķ<EFBFBD><C4B6><EFBFBD><EFBFBD>͵<EFBFBD><CDB5><EFBFBD> <20><><EFBFBD><EFBFBD>
Math::CrossProduct(vTriPlaneNormal, vTriEdge01, vTriEdge02);
Math::Normalize(vTriPlaneNormal, vTriPlaneNormal);
fTriPlaneConstant = -Math::DotProduct(vTriPlaneNormal, vTri0);
// sweeping path <20><> <20><EFBFBD><E6B5B9><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
float fNormalDotPath = Math::DotProduct(vTriPlaneNormal, vPath);
// sphere <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD≯<EFBFBD> üũ<C3BC><C5A9><EFBFBD><EFBFBD>
if (fNormalDotPath > 0.0f)
{
return false;
}
float t0, t1;
bool bEmbededInPlane = false;
float fSignedDistBaseToTriPlane = Math::DotProduct(vTriPlaneNormal, vBasePoint) + fTriPlaneConstant;
if (0.0f == fNormalDotPath)
{
// sphere <20><> <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>ϰ<EFBFBD> <20><><EFBFBD><EFBFBD>
if (fabs(fSignedDistBaseToTriPlane) >= triAndSphere.m_fSphereRadius)
{
return false; // <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD><E9BFA1> <20>ָ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>̵<EFBFBD><CCB5><EFBFBD>
}
else
{
bEmbededInPlane = true;
t0 = 0.0f;
t1 = 1.0f;
}
}
else
{
t0 = (-triAndSphere.m_fSphereRadius-fSignedDistBaseToTriPlane)/fNormalDotPath;
t1 = (triAndSphere.m_fSphereRadius-fSignedDistBaseToTriPlane)/fNormalDotPath;
// t0 < t1 <20><><EFBFBD><EFBFBD> <20><>Ʈ
if (t0 > t1)
{
std::swap(t0, t1);
}
// t <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> sphere <20>̵<EFBFBD><CCB5><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20>ʴ<EFBFBD>
if (t0 > 1.0f || t1 <0.0f)
{
return false;
}
// t <20><><EFBFBD><EFBFBD> 0~1 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Ŭ<><C5AC><EFBFBD><EFBFBD>
t0 = std::max(t0, 0.0f);
t1 = std::min(t1, 1.0f);
}
VECTOR3 vContactPoint;
bool bFoundCollision = false;
float t = 1.0f;
// <20><EFBFBD><EFB0A2> <20><><EFBFBD>ο<EFBFBD> üũ
if (!bEmbededInPlane)
{
vContactPoint = vBasePoint + (vPath*t0) - vTriPlaneNormal;
if (IsPointInTriangle(vContactPoint, vTri0, vTri1, vTri2))
{
bFoundCollision = true;
t = t0;
}
}
// <20><><EFBFBD><EFBFBD> <20><EFBFBD><E6B5B9><EFBFBD><EFBFBD> ã<><C3A3> <20><><EFBFBD>ߴٸ<DFB4> <20>𼭸<EFBFBD><F0BCADB8><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20>׽<EFBFBD>Ʈ<EFBFBD><C6AE> <20>ؾ<EFBFBD><D8BE>Ѵ<EFBFBD>
if (!bFoundCollision)
{
float fSQuaredPathLength = GetSquaredLength(vPath);
float a, b, c;
float newT;
float fSquaredRadius = triAndSphere.m_fSphereRadius*triAndSphere.m_fSphereRadius;
a = fSQuaredPathLength;
// vTri0
b = 2.0f * (DotProduct(vPath, vBasePoint - vTri0));
c = (Math::GetSquaredLength(vTri0 - vBasePoint) - fSquaredRadius);
if (GetLowestRootInRange(a, b, c, 0.0f, t, newT))
{
t = newT;
bFoundCollision = true;
vContactPoint = vTri0;
}
// vTri1
if (bFoundCollision)
{
b = 2.0f * (DotProduct(vPath, vBasePoint - vTri1));
c = (Math::GetSquaredLength(vTri1 - vBasePoint) - fSquaredRadius);
if (GetLowestRootInRange(a, b, c, 0.0f, t, newT))
{
t = newT;
bFoundCollision = true;
vContactPoint = vTri1;
}
}
// vTri2
if (bFoundCollision)
{
b = 2.0f * (DotProduct(vPath, vBasePoint - vTri2));
c = (Math::GetSquaredLength(vTri2 - vBasePoint) - fSquaredRadius);
if (GetLowestRootInRange(a, b, c, 0.0f, t, newT))
{
t = newT;
bFoundCollision = true;
vContactPoint = vTri0;
}
}
// <20>𼭸<EFBFBD><F0BCADB8><EFBFBD> <20><><EFBFBD><EFBFBD> <20>׽<EFBFBD>Ʈ
VECTOR3 vBaseToVertex;
float fEdgeSquaredLength;
float fEdgeDotPath;
float fEdgeDotBaseToVertex;
// vTri0 ~ vTri1
vBaseToVertex = vTri0 - vBasePoint;
fEdgeSquaredLength = GetSquaredLength(vTriEdge01);
fEdgeDotPath = DotProduct(vTriEdge01, vPath);
fEdgeDotBaseToVertex = DotProduct(vTriEdge01, vBaseToVertex);
a = fEdgeSquaredLength* -fSQuaredPathLength +
fEdgeDotPath*fEdgeDotPath;
b = fEdgeSquaredLength* (2.0f*Math::DotProduct(vPath, vBaseToVertex)) -
2.0f*fEdgeDotPath*fEdgeDotBaseToVertex;
c = (fEdgeSquaredLength* (1.0f - Math::GetSquaredLength(vBaseToVertex)) +
fEdgeDotBaseToVertex*fEdgeDotBaseToVertex);
if (GetLowestRootInRange(a, b, c, 0.0f, t, newT))
{
float f = (fEdgeDotPath*t - fEdgeDotBaseToVertex) / fEdgeSquaredLength;
if (f >= 0.0f && f <= 1.0f)
{
t = newT;
bFoundCollision = true;
vContactPoint = vTri0 + vTriEdge01*f;
}
}
// vTri0 ~ vTri2
vBaseToVertex = vTri0 - vBasePoint;
fEdgeSquaredLength = GetSquaredLength(vTriEdge02);
fEdgeDotPath = DotProduct(vTriEdge02, vPath);
fEdgeDotBaseToVertex = DotProduct(vTriEdge02, vBaseToVertex);
a = fEdgeSquaredLength* -fSQuaredPathLength +
fEdgeDotPath*fEdgeDotPath;
b = fEdgeSquaredLength* (2.0f*Math::DotProduct(vPath, vBaseToVertex)) -
2.0f*fEdgeDotPath*fEdgeDotBaseToVertex;
c = (fEdgeSquaredLength* (1.0f - Math::GetSquaredLength(vBaseToVertex)) +
fEdgeDotBaseToVertex*fEdgeDotBaseToVertex);
if (GetLowestRootInRange(a, b, c, 0.0f, t, newT))
{
float f = (fEdgeDotPath*t - fEdgeDotBaseToVertex) / fEdgeSquaredLength;
if (f >= 0.0f && f <= 1.0f)
{
t = newT;
bFoundCollision = true;
vContactPoint = vTri0 + vTriEdge02*f;
}
}
// vTri1 ~ vTri2
vBaseToVertex = vTri1 - vBasePoint;
fEdgeSquaredLength = GetSquaredLength(vTriEdge12);
fEdgeDotPath = DotProduct(vTriEdge12, vPath);
fEdgeDotBaseToVertex = DotProduct(vTriEdge12, vBaseToVertex);
a = fEdgeSquaredLength* -fSQuaredPathLength +
fEdgeDotPath*fEdgeDotPath;
b = fEdgeSquaredLength* (2.0f*Math::DotProduct(vPath, vBaseToVertex)) -
2.0f*fEdgeDotPath*fEdgeDotBaseToVertex;
c = (fEdgeSquaredLength* (1.0f - Math::GetSquaredLength(vBaseToVertex)) +
fEdgeDotBaseToVertex*fEdgeDotBaseToVertex);
if (GetLowestRootInRange(a, b, c, 0.0f, t, newT))
{
float f = (fEdgeDotPath*t - fEdgeDotBaseToVertex) / fEdgeSquaredLength;
if (f >= 0.0f && f <= 1.0f)
{
t = newT;
bFoundCollision = true;
vContactPoint = vTri1 + vTriEdge12*f;
}
}
}
if (bFoundCollision)
{
fOutT = t;
vOutContactPoint = vContactPoint;
return true;
}
return false;
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><EFBFBD><EFB0A2> <20><><EFBFBD><EFBFBD> <20><><EFBFBD>ԵǴ<D4B5><C7B4><EFBFBD> Ȯ<><C8AE><EFBFBD>ϴ<EFBFBD> <20>ڵ<EFBFBD>
// Fauerby <20><> <20>ۿ<EFBFBD> Keidy <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><>ƾ<EFBFBD>̶<EFBFBD><CCB6><EFBFBD> <20>Ѵ<EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>.. <20>𸣰ڴ<F0B8A3B0>-_- <20>ϴ<EFBFBD> <20>̿<EFBFBD>
bool IsPointInTriangle(const VECTOR3& p, const VECTOR3& vTri0, const VECTOR3& vTri1, const VECTOR3& vTri2)
{
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><> <20><EFBFBD><EFB0A2> <20>𼭸<EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> p <20><> <20><>ġ<EFBFBD><C4A1><EFBFBD><EFBFBD>
VECTOR3 vEdge1, vEdge2, pTri;
Math::Subtract(vEdge1, vTri1, vTri0);
Math::Subtract(vEdge2, vTri2, vTri0);
Math::Subtract(pTri, p, vTri0);
float a = Math::DotProduct(vEdge1, vEdge1);
float b = Math::DotProduct(vEdge1, vEdge2);
float c = Math::DotProduct(vEdge2, vEdge2);
float d = Math::DotProduct(pTri, vEdge1);
float e = Math::DotProduct(pTri, vEdge2);
float x = d*c - e*b;
float y = e*a - d*b;
float z = x + y - (a*c - b*b);
return ( ((unsigned int&)z) & ~ ( ((unsigned int&)x) | ((unsigned int&)y) ) & 0x80000000) != 0 ? true : false;
}
}}

View File

@@ -0,0 +1,541 @@
#include "../Include/OctreeCollider.h"
#include "../Include/MathUtil.h"
#include <algorithm>
#include <windows.h>
#include <d3d8.h>
#include <d3dx8.h>
namespace CrossM{
namespace Scene{
COctreeCollisionNode::COctreeCollisionNode()
{
for (int i = 0; i < 8; ++i)
{
m_apSubNode[i] = NULL;
}
m_vBoundingMin.SetValue(0,0,0);
m_vBoundingMax.SetValue(0,0,0);
}
COctreeCollisionNode::~COctreeCollisionNode()
{
ReleaseSubNode();
}
void COctreeCollisionNode::ReleaseSubNode()
{
for (int i = 0; i < 8; ++i)
{
if (NULL != m_apSubNode[i])
{
delete m_apSubNode[i];
m_apSubNode[i] = NULL;
}
}
}
// <20>ڽij<DABD><C4B3><20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
bool COctreeCollisionNode::IsLeafNode()
{
for (int i = 0; i < 8; ++i)
{
if (NULL != m_apSubNode[i])
{
return false;
}
}
return true;
}
void COctreeCollisionNode::BuildSubNode(
const std::vector< CollisionTriangleInfo >& vecTriangle,
const size_t nMaximumRecursion, const size_t nMinPolyCount,
size_t nCurrentRecursionLevel)
{
static size_t nProcessedTri = 0;
unsigned int i, j;
// recursion level <20><> <20>ʹ<EFBFBD> <20><><EFBFBD>ų<EFBFBD>, <20><><EFBFBD>Ե<EFBFBD> face <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD>̻<EFBFBD> sub node <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>ʴ´<CAB4> (<28><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>)
if (nCurrentRecursionLevel >= nMaximumRecursion ||
m_vecTriangleIndex.size() <= nMinPolyCount)
{
nProcessedTri += m_vecTriangleIndex.size();
printf("\r%d / %d", nProcessedTri, vecTriangle.size());
return;
}
// <20>ڽ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> bounding box min/max
Math::VECTOR3 aSubNodeBoundingMin[8];
Math::VECTOR3 aSubNodeBoundingMax[8];
Math::VECTOR3 vMedian = (m_vBoundingMin + m_vBoundingMax)/2.0f;
// <20>ٿ<EFBFBD><D9BF><EFBFBD> <20>ڽ<EFBFBD> <20><> <20><><EFBFBD><EFBFBD>
for (i = 0; i < 8; ++i)
{
if (0 == (i & 1))
{
aSubNodeBoundingMin[i].x = m_vBoundingMin.x;
aSubNodeBoundingMax[i].x = vMedian.x;
}
else
{
aSubNodeBoundingMin[i].x = vMedian.x;
aSubNodeBoundingMax[i].x = m_vBoundingMax.x;
}
if (0 == (i & 2))
{
aSubNodeBoundingMin[i].y = m_vBoundingMin.y;
aSubNodeBoundingMax[i].y = vMedian.y;
}
else
{
aSubNodeBoundingMin[i].y = vMedian.y;
aSubNodeBoundingMax[i].y = m_vBoundingMax.y;
}
if (0 == (i & 4))
{
aSubNodeBoundingMin[i].z = m_vBoundingMin.z;
aSubNodeBoundingMax[i].z = vMedian.z;
}
else
{
aSubNodeBoundingMin[i].z = vMedian.z;
aSubNodeBoundingMax[i].z = m_vBoundingMax.z;
}
}
// <20>Ѱܹ<D1B0><DCB9><EFBFBD> <20><EFBFBD><EFB0A2> <20>ε<EFBFBD><CEB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>Ϻ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͵<EFBFBD><CDB5><EFBFBD> <20><> <20><><EFBFBD><20><><EFBFBD><EFBFBD><EFBFBD>ɰ͵<C9B0><CDB5><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>س<EFBFBD><D8B3><EFBFBD>
for (j = 0; j < m_vecTriangleIndex.size(); ++j)
{
// <20><EFBFBD><EFB0A2> <20><> <20><> <20><><EFBFBD><EFBFBD>
const CollisionTriangleInfo &tri = vecTriangle[ m_vecTriangleIndex[j] ];
const Math::VECTOR3 &vTri0 = tri.m_avVertex[0];
const Math::VECTOR3 &vTri1 = tri.m_avVertex[1];
const Math::VECTOR3 &vTri2 = tri.m_avVertex[2];
// <20><> <20>ڽij<DABD><C4B3><EFBFBD><EFBFBD><20><><EFBFBD><EFBFBD> <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20><><EFBFBD>ԵǴ<D4B5><C7B4><EFBFBD> üũ<C3BC>Ѵ<EFBFBD>
bool bIncludedInSubNode = false; // <20>ڽ<EFBFBD> <20><><EFBFBD><20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20><><EFBFBD>ԵǴ<D4B5><C7B4><EFBFBD> <20><><EFBFBD>θ<EFBFBD> <20><>Ÿ<EFBFBD><C5B8><EFBFBD><EFBFBD> <20>÷<EFBFBD><C3B7><EFBFBD>
for (i = 0; i < 8; ++i)
{
if (Math::IsTriangleInAabb(aSubNodeBoundingMin[i], aSubNodeBoundingMax[i], vTri0, vTri1, vTri2))
{
// <20><><EFBFBD><20>Ҵ<EFBFBD><D2B4><EFBFBD><EFBFBD><EFBFBD> <20>ʾ<EFBFBD><CABE><EFBFBD><EFBFBD><EFBFBD> <20>Ҵ<EFBFBD>
COctreeCollisionNode* &pNode = m_apSubNode[i];
if (NULL == pNode)
{
pNode = new COctreeCollisionNode;
pNode->m_vBoundingMin = aSubNodeBoundingMin[i];
pNode->m_vBoundingMax = aSubNodeBoundingMax[i];
}
// <20>ڽij<DABD><C4B3><20>Ѱ<EFBFBD><D1B0><EFBFBD> <20><EFBFBD><EFB0A2> <20>ε<EFBFBD><CEB5><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
pNode->m_vecTriangleIndex.push_back(m_vecTriangleIndex[j]);
bIncludedInSubNode = true;
break;
}
}
if (!bIncludedInSubNode)
{
// <20><> <20><><EFBFBD><20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>ԵǴ°<C7B4><C2B0><EFBFBD> <20>ƴ϶<C6B4> <20>ټ<EFBFBD> <20><><EFBFBD><EFBFBD><E5B0A3> <20><>ġ<EFBFBD><C4A1> <20><EFBFBD><EFB0A2><EFBFBD>̹Ƿ<CCB9>,
// triangle - AABB intersection <20>׽<EFBFBD>Ʈ<EFBFBD><C6AE> <20>Ѵ<EFBFBD>
for (i = 0; i < 8; ++i)
{
if (Math::CheckAabbTriangleIntersection(aSubNodeBoundingMin[i], aSubNodeBoundingMax[i], vTri0, vTri1, vTri2))
{
// <20><><EFBFBD><20>Ҵ<EFBFBD><D2B4><EFBFBD><EFBFBD><EFBFBD> <20>ʾ<EFBFBD><CABE><EFBFBD><EFBFBD><EFBFBD> <20>Ҵ<EFBFBD>
COctreeCollisionNode* &pNode = m_apSubNode[i];
if (NULL == pNode)
{
pNode = new COctreeCollisionNode;
pNode->m_vBoundingMin = aSubNodeBoundingMin[i];
pNode->m_vBoundingMax = aSubNodeBoundingMax[i];
}
// <20>ڽij<DABD><C4B3><20>Ѱ<EFBFBD><D1B0><EFBFBD> <20><EFBFBD><EFB0A2> <20>ε<EFBFBD><CEB5><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
pNode->m_vecTriangleIndex.push_back(m_vecTriangleIndex[j]);
}
}
}
}
// <20><EFBFBD><EFB0A2> <20>ε<EFBFBD><CEB5><EFBFBD><EFBFBD><EFBFBD> <20>ڽ<EFBFBD> <20><><EFBFBD><20><><EFBFBD><EFBFBD> <20>Ѱ<EFBFBD><D1B0>־<EFBFBD><D6BE><EFBFBD><EFBFBD>Ƿ<EFBFBD> <20><> <20>̻<EFBFBD> <20>ε<EFBFBD><CEB5><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20>ʿ䰡 <20><><EFBFBD><EFBFBD>
m_vecTriangleIndex.clear();
// <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20>ִ<EFBFBD> <20>ڽ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> BuildSubNode <20><> ȣ<><C8A3><EFBFBD>Ѵ<EFBFBD>
for (i = 0; i < 8; ++i)
{
if (NULL != m_apSubNode[i])
{
m_apSubNode[i]->BuildSubNode(vecTriangle, nMaximumRecursion, nMinPolyCount, nCurrentRecursionLevel+1);
}
}
}
void COctreeCollisionNode::CollectCollidableNodes(
const Math::VECTOR3& vSweptVolumeMin, const Math::VECTOR3& vSweptVolumeMax,
std::vector< COctreeCollisionNode* >& vecCollidableNode)
{
if(!Math::CheckAabbAabbIntersection(vSweptVolumeMin, vSweptVolumeMax, m_vBoundingMin, m_vBoundingMax))
{
return;
}
if (IsLeafNode())
{
vecCollidableNode.push_back(this);
}
else
{
for (int i = 0; i < 8; ++i)
{
if (NULL != m_apSubNode[i])
{
m_apSubNode[i]->CollectCollidableNodes(vSweptVolumeMin, vSweptVolumeMax, vecCollidableNode);
}
}
}
}
//////////////////////////////////////////////////////////////////////////
COctreeCollider::COctreeCollider()
{
m_nColTriIndex = 0;
}
COctreeCollider::~COctreeCollider()
{
}
void COctreeCollider::SetTriangleCount(unsigned int uiTriangleCount)
{
m_vecCollisionTriangle.resize(uiTriangleCount);
}
void COctreeCollider::GetTriangleDataPtr(CollisionTriangleInfo*& pTriangleData)
{
if (m_vecCollisionTriangle.size() > 0)
{
pTriangleData = &(m_vecCollisionTriangle[0]);
}
else
{
pTriangleData = NULL;
}
}
bool COctreeCollider::BuildOctree(const size_t nMaximumRecursion, const size_t nMinPolyCount)
{
unsigned int i, j;
if (0 == m_vecCollisionTriangle.size())
{
m_vCollisionBoundingMin.SetValue(0,0,0);
m_vCollisionBoundingMax.SetValue(0,0,0);
return true; // <20>޽<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>Ͱ<EFBFBD> <20><><EFBFBD><EFBFBD> <20>־ <20>ϴ<EFBFBD><CFB4><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>..
}
// <20>ϴ<EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
m_octreeRootNode.ReleaseSubNode();
// bounding min/max <20><><EFBFBD>ϱ<EFBFBD>
m_vCollisionBoundingMin = m_vecCollisionTriangle[0].m_avVertex[0];
m_vCollisionBoundingMax = m_vecCollisionTriangle[0].m_avVertex[0];
for (i = 0; i < m_vecCollisionTriangle.size(); ++i)
{
for (j = 0; j < 3; ++j)
{
CrossM::Math::VECTOR3& v = m_vecCollisionTriangle[i].m_avVertex[j];
if (v.x < m_vCollisionBoundingMin.x) m_vCollisionBoundingMin.x = v.x;
if (v.y < m_vCollisionBoundingMin.y) m_vCollisionBoundingMin.y = v.y;
if (v.z < m_vCollisionBoundingMin.z) m_vCollisionBoundingMin.z = v.z;
if (v.x > m_vCollisionBoundingMax.x) m_vCollisionBoundingMax.x = v.x;
if (v.y > m_vCollisionBoundingMax.y) m_vCollisionBoundingMax.y = v.y;
if (v.z > m_vCollisionBoundingMax.z) m_vCollisionBoundingMax.z = v.z;
}
}
// octree root node <20><> <20>ٿ<EFBFBD><D9BF><EFBFBD> <20>ڽ<EFBFBD> <20><> <20><><EFBFBD><EFBFBD>
m_octreeRootNode.m_vBoundingMin = m_vCollisionBoundingMin;
m_octreeRootNode.m_vBoundingMax = m_vCollisionBoundingMax;
// octree root node <20><> <20><><EFBFBD>Ե<EFBFBD> <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20>ε<EFBFBD><CEB5><EFBFBD>(<28><>ü)<29><> <20><><EFBFBD><EFBFBD>
m_octreeRootNode.m_vecTriangleIndex.resize(m_vecCollisionTriangle.size());
for (i = 0; i < m_octreeRootNode.m_vecTriangleIndex.size(); ++i)
{
m_octreeRootNode.m_vecTriangleIndex[i] = i;
}
// DWORD dwTime = timeGetTime();
// for (i = 0; i < m_vecCollisionTriangle.size(); ++i)
// {
// CollisionTriangleInfo& tri = m_vecCollisionTriangle[i];
// Math::VECTOR3& vTri0 = m_vecCollisionVertex[ tri.m_lIndex[0] ];
// Math::VECTOR3& vTri1 = m_vecCollisionVertex[ tri.m_lIndex[1] ];
// Math::VECTOR3& vTri2 = m_vecCollisionVertex[ tri.m_lIndex[2] ];
//
// Math::CheckAabbTriangleIntersection(m_vCollisionBoundingMin, m_vCollisionBoundingMax, vTri0, vTri1, vTri2);
// }
// DWORD dwElapsed = timeGetTime() - dwTime;
//
// dwTime = timeGetTime();
// for (i = 0; i < m_vecCollisionTriangle.size(); ++i)
// {
// CollisionTriangleInfo& tri = m_vecCollisionTriangle[i];
// Math::VECTOR3& vTri0 = m_vecCollisionVertex[ tri.m_lIndex[0] ];
// Math::VECTOR3& vTri1 = m_vecCollisionVertex[ tri.m_lIndex[1] ];
// Math::VECTOR3& vTri2 = m_vecCollisionVertex[ tri.m_lIndex[2] ];
//
// Math::IsTriangleInAabb(m_vCollisionBoundingMin, m_vCollisionBoundingMax, vTri0, vTri1, vTri2);
// }
// DWORD dwElapsed2 = timeGetTime() - dwTime;
// <20>Ϻ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
m_octreeRootNode.BuildSubNode(m_vecCollisionTriangle, nMaximumRecursion, nMinPolyCount, 0);
return true;
}
void COctreeCollider::GetCollisionRespondingPosition(
Math::VECTOR3& vOutRespondingPos,
const Math::VECTOR3& vPrevPos, const Math::VECTOR3& vNewPos,
const Math::VECTOR3& vEllipsoidRadius,
const unsigned int nRecursionLevel)
{
size_t i, j, nMinCollisionTriangleIndex;
// ellipsoid <20><> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Ŀ<><C4BF><EFBFBD>ϴ<EFBFBD> <20><EFBFBD><E7B0A2>(AABB)<29><> min/max <20><>
Math::VECTOR3 vSweptVolumeMin, vSweptVolumeMax;
vSweptVolumeMin.x = min(vPrevPos.x, vNewPos.x) - vEllipsoidRadius.x;
vSweptVolumeMax.x = max(vPrevPos.x, vNewPos.x) + vEllipsoidRadius.x;
vSweptVolumeMin.y = min(vPrevPos.y, vNewPos.y) - vEllipsoidRadius.y;
vSweptVolumeMax.y = max(vPrevPos.y, vNewPos.y) + vEllipsoidRadius.y;
vSweptVolumeMin.z = min(vPrevPos.z, vNewPos.z) - vEllipsoidRadius.z;
vSweptVolumeMax.z = max(vPrevPos.z, vNewPos.z) + vEllipsoidRadius.z;
m_vecpCollidableNode.clear();
m_octreeRootNode.CollectCollidableNodes(vSweptVolumeMin, vSweptVolumeMax, m_vecpCollidableNode);
if (0 == m_vecpCollidableNode.size())
{
// <20><20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>ִ<EFBFBD> <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
vOutRespondingPos = vNewPos;
return;
}
// ellipsoid <20><>ǥ<EFBFBD><C7A5> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>. sweep <20><><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> sweep <20><><EFBFBD><EFBFBD><E2BAA4>, sweep <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
Math::VECTOR3 vESweepStart, vESweepEnd, vESweepPath;
float fESweepLength;
vESweepStart.SetValue(vPrevPos.x/vEllipsoidRadius.x, vPrevPos.y/vEllipsoidRadius.y, vPrevPos.z/vEllipsoidRadius.z);
vESweepEnd.SetValue(vNewPos.x/vEllipsoidRadius.x, vNewPos.y/vEllipsoidRadius.y, vNewPos.z/vEllipsoidRadius.z);
Math::Subtract(vESweepPath, vESweepEnd, vESweepStart);
fESweepLength = Math::GetLength(vESweepPath);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
if (fESweepLength < Math::F_EPSILON)
{
vOutRespondingPos = vPrevPos;
return;
}
// sweeping sphere <20><> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
Math::TriangSweepingSphere triAndSphere;
triAndSphere.m_vSphereSweepStart = vESweepStart;
triAndSphere.m_vSphereSweepPath = vESweepPath;
triAndSphere.m_fSphereRadius = 1.0f; // ellipsoid <20><>ǥ<EFBFBD><C7A5><EFBFBD>̹Ƿ<CCB9> <20>浹Ÿ<E6B5B9><C5B8>ü<EFBFBD><C3BC> <20><><EFBFBD><EFBFBD> <20><>ü<EFBFBD><C3BC> <20><>ȯ<EFBFBD>Ǿ<EFBFBD><C7BE><EFBFBD>
bool bCollision = false; // <20><><EFBFBD>õ<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E9BFA1> <20><EFBFBD><E6B5B9> <20>Ͼ <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20>ִ<EFBFBD><D6B4><EFBFBD> <20><><EFBFBD>θ<EFBFBD> <20><>Ÿ<EFBFBD><C5B8><EFBFBD><EFBFBD> <20>÷<EFBFBD><C3B7><EFBFBD>
float fMinCollisionDistFactor = 9999.0f;// collision <20><> <20>Ͼ <20><><EFBFBD><EFBFBD> sweeping path <20><> <20><><EFBFBD><EFBFBD> <20><>ġ<EFBFBD><C4A1><EFBFBD><EFBFBD> <20><>Ÿ<EFBFBD><C5B8><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
// 0 <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, 1 <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
Math::VECTOR3 vMinContactPoint; // fMinCollisionDistFactor <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><>ǥ. ellipsoid <20><>ǥ<EFBFBD><C7A5><EFBFBD><EFBFBD>
bool bMinContactInsideTriangle; // fMinCollisionDistFactor <20><><EFBFBD><EFBFBD> <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><EFBFBD><EFB0A2> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>(<28>𼭸<EFBFBD><F0BCADB8><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>ƴ<EFBFBD>) <20><>Ÿ<EFBFBD><C5B8><EFBFBD><EFBFBD> <20>÷<EFBFBD><C3B7><EFBFBD>
for (i = 0; i < m_vecpCollidableNode.size(); ++i)
{
COctreeCollisionNode& node = *(m_vecpCollidableNode[i]);
for (j = 0; j < node.m_vecTriangleIndex.size(); ++j)
{
CollisionTriangleInfo& tri = m_vecCollisionTriangle[ node.m_vecTriangleIndex[j] ];
// <20><EFBFBD><EFB0A2> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
Math::VECTOR3& vTri0 = tri.m_avVertex[0];
Math::VECTOR3& vTri1 = tri.m_avVertex[1];
Math::VECTOR3& vTri2 = tri.m_avVertex[2];
// <20><EFBFBD><EFB0A2> <20><><EFBFBD><EFBFBD> ellipsoid <20><>ǥ<EFBFBD><C7A5><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>-<2D><>-
triAndSphere.m_vTri0.SetValue(vTri0.x/vEllipsoidRadius.x, vTri0.y/vEllipsoidRadius.y, vTri0.z/vEllipsoidRadius.z);
triAndSphere.m_vTri1.SetValue(vTri1.x/vEllipsoidRadius.x, vTri1.y/vEllipsoidRadius.y, vTri1.z/vEllipsoidRadius.z);
triAndSphere.m_vTri2.SetValue(vTri2.x/vEllipsoidRadius.x, vTri2.y/vEllipsoidRadius.y, vTri2.z/vEllipsoidRadius.z);
float fCollisionDistFactor;
Math::VECTOR3 vContactPoint;
bool bContactInside;
// <20><EFBFBD><EFB0A2> - sweeping sphere <20><20>˻<EFBFBD>
if (Math::CheckTriangleSweepingSphereCollision(fCollisionDistFactor, vContactPoint, bContactInside, triAndSphere))
{
// <20><EFBFBD≯<EFBFBD>
bCollision = true;
if(fCollisionDistFactor < fMinCollisionDistFactor)
{
vMinContactPoint = vContactPoint;
fMinCollisionDistFactor = fCollisionDistFactor;
nMinCollisionTriangleIndex = node.m_vecTriangleIndex[j];
bMinContactInsideTriangle = bContactInside;
}
}
}
}
if (!bCollision)
{
// <20><20><><EFBFBD><EFBFBD>
vOutRespondingPos = vNewPos;
return;
}
m_nColTriIndex = nMinCollisionTriangleIndex;
// collision response phase
Math::VECTOR3 vMovedPos; // <20>ϴ<EFBFBD> <20><EFBFBD><E6B5B9> <20>Ͼ<CFBE><EEB3AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>̵<EFBFBD><CCB5><EFBFBD> <20><>ġ
Math::Lerp(vMovedPos, vPrevPos, vNewPos, fMinCollisionDistFactor); // <20>ϴ<EFBFBD> <20>̵<EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><>ġ<EFBFBD><C4A1> <20>Űܳ<C5B0><DCB3><EFBFBD> <20><>..
// <20><><EFBFBD><EFBFBD> <20>̵<EFBFBD><CCB5>Ϸ<EFBFBD><CFB7><EFBFBD> <20>Ÿ<EFBFBD><C5B8><EFBFBD> 90% <20>̻<EFBFBD><CCBB><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>߰ų<DFB0>, recursion <20><> 4<><34> <20><><EFBFBD><EFBFBD><EFBFBD>Ǿ<EFBFBD><C7BE><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>Ѵ<EFBFBD>.
if (fMinCollisionDistFactor > 0.9f || nRecursionLevel >= 4)
{
vOutRespondingPos = vMovedPos;
return;
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><>ǥ<EFBFBD><C7A5> ellipsoid <20><>ǥ<EFBFBD><EFBFBD><E8BFA1> <20><><EFBFBD><EFBFBD> <20><>ǥ<EFBFBD><C7A5><EFBFBD><EFBFBD> ȯ<><C8AF>
vMinContactPoint.x *= vEllipsoidRadius.x;
vMinContactPoint.y *= vEllipsoidRadius.y;
vMinContactPoint.z *= vEllipsoidRadius.z;
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
Math::VECTOR3 vTangentPlaneNormal;
if (bMinContactInsideTriangle)
{
// <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><EFBFBD><E6B5B9> <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> normal <20><> <20>״<EFBFBD><D7B4><EFBFBD> <20>̿<EFBFBD><CCBF>Ѵ<EFBFBD>
CollisionTriangleInfo& colTriInfo = m_vecCollisionTriangle[nMinCollisionTriangleIndex];
Math::VECTOR3& vCollTri0 = colTriInfo.m_avVertex[0];
Math::VECTOR3& vCollTri1 = colTriInfo.m_avVertex[1];
Math::VECTOR3& vCollTri2 = colTriInfo.m_avVertex[2];
vTangentPlaneNormal = ((vCollTri1 - vCollTri0) ^ (vCollTri2 - vCollTri0));
}
else
{
// <20>𼭸<EFBFBD><F0BCADB8><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><EFBFBD><E6B5B9> <20><><EFBFBD><EFBFBD>, Ÿ<><C5B8>ü<EFBFBD><C3BC> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>ϴ<EFBFBD> <20><><EFBFBD><EFBFBD> <20>̿<EFBFBD><CCBF><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> normal <20><> <20><><EFBFBD>Ѵ<EFBFBD>
Math::Subtract(vTangentPlaneNormal, vMovedPos, vMinContactPoint);
vTangentPlaneNormal.x /= (vEllipsoidRadius.x*vEllipsoidRadius.x);
vTangentPlaneNormal.y /= (vEllipsoidRadius.y*vEllipsoidRadius.y);
vTangentPlaneNormal.z /= (vEllipsoidRadius.z*vEllipsoidRadius.z);
Math::Normalize(vTangentPlaneNormal, vTangentPlaneNormal);
}
Math::Normalize(vTangentPlaneNormal, vTangentPlaneNormal);
// <20><EFBFBD><E6B5B9> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>ϰ<EFBFBD> <20><><EFBFBD><EFBFBD> <20>̵<EFBFBD><CCB5><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>͸<EFBFBD> <20><><EFBFBD><EFBFBD>
Math::VECTOR3 vRemainder;
Math::Subtract(vRemainder, vNewPos, vMovedPos);
// <20><EFBFBD><E6B5B9> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>ϼ<EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20>Ǵ<EFBFBD> <20>̵<EFBFBD><CCB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
float fVanishingComponentFactor = Math::DotProduct(vTangentPlaneNormal, vRemainder);
Math::VECTOR3 vVanishingComponent;
Math::Scale(vVanishingComponent, vTangentPlaneNormal, fVanishingComponentFactor);
// <20><><EFBFBD><EFBFBD> <20>̵<EFBFBD><CCB5><EFBFBD><EFBFBD>п<EFBFBD><D0BF><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>ϼ<EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
Math::Subtract(vRemainder, vRemainder, vVanishingComponent);
// <20><><EFBFBD><EFBFBD> <20>̵<EFBFBD><CCB5><EFBFBD><EFBFBD>͸<EFBFBD>ŭ<EFBFBD><C5AD> <20>̵<EFBFBD><CCB5><EFBFBD> <20><><EFBFBD><EFBFBD> <20>浹üũ <20><><EFBFBD><EFBFBD>ȣ<EFBFBD><C8A3>
GetCollisionRespondingPosition(vOutRespondingPos, vMovedPos, vMovedPos+vRemainder, vEllipsoidRadius, nRecursionLevel+1);
}
void COctreeCollider::RenderCollidableNodeTriangles(IDirect3DDevice8* pDevice)
{
size_t nRenderTriCount; //j, i, nTriFilled;
if (0 == m_vecpCollidableNode.size())
{
return;
}
// // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><EFBFBD><EFB0A2><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
// nRenderTriCount = 0;
// for (i = 0; i < m_vecpCollidableNode.size(); ++i)
// {
// nRenderTriCount += m_vecpCollidableNode[i]->m_vecTriangleIndex.size();
// }
//
// // <20><><EFBFBD>ؽ<EFBFBD> <20><><EFBFBD><EFBFBD> Ȯ<><C8AE>
// m_vecRenderVertex.resize(nRenderTriCount*3);
//
// nTriFilled = 0;
// for (i = 0; i < m_vecpCollidableNode.size(); ++i)
// {
// COctreeCollisionNode& node = *(m_vecpCollidableNode[i]);
//
// for (j = 0; j < node.m_vecTriangleIndex.size(); ++j)
// {
// size_t nTriIndex = node.m_vecTriangleIndex[j];
// CollisionTriangleInfo& tri = m_vecCollisionTriangle[nTriIndex];
//
// m_vecRenderVertex[nTriFilled*3] = tri.m_avVertex[0];
// m_vecRenderVertex[nTriFilled*3 + 1] = tri.m_avVertex[1];
// m_vecRenderVertex[nTriFilled*3 + 2] = tri.m_avVertex[2];
// ++nTriFilled;
// }
// }
nRenderTriCount = 1; // <20><EFBFBD><EFBFBD><EFB0A2> 1<><31><EFBFBD><EFBFBD>
m_vecRenderVertex.resize(nRenderTriCount*3);
CollisionTriangleInfo& tri = m_vecCollisionTriangle[m_nColTriIndex];
m_vecRenderVertex[0] = tri.m_avVertex[0];
m_vecRenderVertex[1] = tri.m_avVertex[1];
m_vecRenderVertex[2] = tri.m_avVertex[2];
D3DXMATRIX mTmp;
D3DXMatrixIdentity(&mTmp);
pDevice->SetTransform(D3DTS_WORLD, &mTmp);
DWORD dwFillMode, dwZFunc;
pDevice->GetRenderState(D3DRS_FILLMODE, &dwFillMode);
pDevice->GetRenderState(D3DRS_ZFUNC, &dwZFunc);
pDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
pDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
pDevice->SetVertexShader(D3DFVF_XYZ);
pDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, (UINT)nRenderTriCount, &(m_vecRenderVertex[0]), sizeof(Math::VECTOR3));
pDevice->SetRenderState(D3DRS_FILLMODE, dwFillMode);
pDevice->SetRenderState(D3DRS_ZFUNC, dwZFunc);
}
}}