Files
V2GDecoderC/csharp/dotnet/EXI/EXIEncoderExact.cs
ChiKyun Kim 5afcce7a17 feat: Add CurrentDemandRes encoding support to universal EXI codec
- Implemented complete CurrentDemandRes encoder following C grammar states 317-329
- Added EncodeCurrentDemandResType with proper response code, DC_EVSEStatus, voltage/current values
- Added EncodeDC_EVSEStatusType for EVSE status with optional isolation status
- Fixed missing EncodeString and EncodeMeterInfo methods for string and meter data encoding
- Added EncodeInteger64 for 64-bit TMeter field support
- Fixed type conversions (uint to int) for proper bit stream encoding
- Verified encoding functionality with CurrentDemandRes test XML
- Encoder now supports both CurrentDemandReq and CurrentDemandRes as minimum requirement
- Structured for expansion to support all ISO 15118 message types (universal codec)

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-10 17:04:27 +09:00

646 lines
29 KiB
C#

using System;
using System.Text;
using V2GDecoderNet.V2G;
namespace V2GDecoderNet.EXI
{
/// <summary>
/// EXI Encoder with exact C compatibility
/// Matches iso1EXIDatatypesEncoder.c structure
/// </summary>
public static class EXIEncoderExact
{
public static byte[] EncodeV2GMessage(V2GMessageExact message)
{
try
{
var stream = new BitOutputStreamExact();
// Write EXI header - exactly like C writeEXIHeader()
stream.WriteNBitUnsignedInteger(8, 0x80);
stream.WriteNBitUnsignedInteger(8, 0x98);
// Encode document content - exactly like C encode_iso1ExiDocument
// V2G_Message choice = 76 (7-bit)
stream.WriteNBitUnsignedInteger(7, 76);
// Encode V2G_Message content - matches C encode_iso1AnonType_V2G_Message
EncodeV2GMessageContent(stream, message);
return stream.ToArray();
}
catch (Exception ex)
{
Console.Error.WriteLine($"EXI encoding error: {ex.Message}");
throw new Exception($"Failed to encode V2G message: {ex.Message}", ex);
}
}
/// <summary>
/// Encode V2G_Message content - exact port of C encode_iso1AnonType_V2G_Message
/// </summary>
private static void EncodeV2GMessageContent(BitOutputStreamExact stream, V2GMessageExact message)
{
// Grammar state for V2G_Message: Header is mandatory
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(Header)
EncodeMessageHeader(stream, message.SessionID);
// Grammar state: Body is mandatory
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(Body)
EncodeBodyType(stream, message.Body);
// END_ELEMENT for V2G_Message
stream.WriteNBitUnsignedInteger(1, 0);
}
/// <summary>
/// Encode MessageHeader - exact port of C encode_iso1MessageHeaderType
/// </summary>
private static void EncodeMessageHeader(BitOutputStreamExact stream, string sessionId)
{
// Grammar state for MessageHeaderType: SessionID is mandatory
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(SessionID)
// SessionID encoding - binary hex format exactly like C
// Convert hex string to bytes first
byte[] sessionBytes = ConvertHexStringToBytes(sessionId);
// Encode as binary string (characters[BINARY_HEX])
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS choice
stream.WriteUnsignedInteger((uint)sessionBytes.Length); // Length encoding
// Write actual bytes
WriteBytes(stream, sessionBytes);
// End SessionID element
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
// Grammar allows optional Notification and Signature, but we don't use them
// End Header with 2-bit choice for end
stream.WriteNBitUnsignedInteger(2, 2); // END_ELEMENT choice (skipping optional elements)
}
/// <summary>
/// Encode Body content - exact port of C encode_iso1BodyType
/// </summary>
private static void EncodeBodyType(BitOutputStreamExact stream, BodyType body)
{
// Grammar state for Body: 6-bit choice for message type
if (body.CurrentDemandReq_isUsed)
{
// Choice 13 for CurrentDemandReq - exactly like C version
stream.WriteNBitUnsignedInteger(6, 13);
EncodeCurrentDemandReqType(stream, body.CurrentDemandReq);
}
else if (body.CurrentDemandRes_isUsed)
{
// Choice 14 for CurrentDemandRes - exactly like C version
stream.WriteNBitUnsignedInteger(6, 14);
EncodeCurrentDemandResType(stream, body.CurrentDemandRes);
}
else
{
throw new Exception("Unsupported message type for encoding. Currently supported: CurrentDemandReq, CurrentDemandRes");
}
// End Body element - grammar state 3
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
}
private static void EncodeCurrentDemandReqType(BitOutputStreamExact stream, CurrentDemandReqType req)
{
// Grammar state 273: DC_EVStatus (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(DC_EVStatus)
EncodeDC_EVStatusType(stream, req.DC_EVStatus);
// Grammar state 274: EVTargetCurrent (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVTargetCurrent)
EncodePhysicalValueType(stream, req.EVTargetCurrent);
// Grammar state 275: Optional elements (3-bit choice)
EncodeOptionalElements275(stream, req);
}
private static void EncodeOptionalElements275(BitOutputStreamExact stream, CurrentDemandReqType req)
{
// Grammar state 275 - handle optional elements in sequence
if (req.EVMaximumVoltageLimit_isUsed)
{
stream.WriteNBitUnsignedInteger(3, 0); // EVMaximumVoltageLimit choice
EncodePhysicalValueType(stream, req.EVMaximumVoltageLimit);
EncodeOptionalElements276(stream, req); // Continue to state 276
}
else if (req.EVMaximumCurrentLimit_isUsed)
{
stream.WriteNBitUnsignedInteger(3, 1); // EVMaximumCurrentLimit choice
EncodePhysicalValueType(stream, req.EVMaximumCurrentLimit);
EncodeOptionalElements277(stream, req); // Continue to state 277
}
else if (req.EVMaximumPowerLimit_isUsed)
{
stream.WriteNBitUnsignedInteger(3, 2); // EVMaximumPowerLimit choice
EncodePhysicalValueType(stream, req.EVMaximumPowerLimit);
EncodeOptionalElements278(stream, req); // Continue to state 278
}
else if (req.BulkChargingComplete_isUsed)
{
stream.WriteNBitUnsignedInteger(3, 3); // BulkChargingComplete choice
stream.WriteNBitUnsignedInteger(1, 0); // boolean start
stream.WriteNBitUnsignedInteger(1, req.BulkChargingComplete ? 1 : 0); // boolean value
stream.WriteNBitUnsignedInteger(1, 0); // EE
EncodeOptionalElements279(stream, req); // Continue to state 279
}
else
{
// ChargingComplete (mandatory)
stream.WriteNBitUnsignedInteger(3, 4); // ChargingComplete choice
stream.WriteNBitUnsignedInteger(1, 0); // boolean start
stream.WriteNBitUnsignedInteger(1, req.ChargingComplete ? 1 : 0); // boolean value
stream.WriteNBitUnsignedInteger(1, 0); // EE
EncodeOptionalElements280(stream, req); // Continue to state 280
}
}
private static void EncodeOptionalElements276(BitOutputStreamExact stream, CurrentDemandReqType req)
{
// After EVMaximumVoltageLimit - states similar to 275 but different grammar
if (req.EVMaximumCurrentLimit_isUsed)
{
stream.WriteNBitUnsignedInteger(3, 0); // EVMaximumCurrentLimit
EncodePhysicalValueType(stream, req.EVMaximumCurrentLimit);
EncodeOptionalElements277(stream, req);
}
else if (req.EVMaximumPowerLimit_isUsed)
{
stream.WriteNBitUnsignedInteger(3, 1); // EVMaximumPowerLimit
EncodePhysicalValueType(stream, req.EVMaximumPowerLimit);
EncodeOptionalElements278(stream, req);
}
else if (req.BulkChargingComplete_isUsed)
{
stream.WriteNBitUnsignedInteger(3, 2); // BulkChargingComplete
stream.WriteNBitUnsignedInteger(1, 0); // boolean start
stream.WriteNBitUnsignedInteger(1, req.BulkChargingComplete ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // EE
EncodeOptionalElements279(stream, req);
}
else
{
stream.WriteNBitUnsignedInteger(3, 3); // ChargingComplete
stream.WriteNBitUnsignedInteger(1, 0); // boolean start
stream.WriteNBitUnsignedInteger(1, req.ChargingComplete ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // EE
EncodeOptionalElements280(stream, req);
}
}
private static void EncodeOptionalElements277(BitOutputStreamExact stream, CurrentDemandReqType req)
{
// After EVMaximumCurrentLimit
if (req.EVMaximumPowerLimit_isUsed)
{
stream.WriteNBitUnsignedInteger(2, 0); // EVMaximumPowerLimit
EncodePhysicalValueType(stream, req.EVMaximumPowerLimit);
EncodeOptionalElements278(stream, req);
}
else if (req.BulkChargingComplete_isUsed)
{
stream.WriteNBitUnsignedInteger(2, 1); // BulkChargingComplete
stream.WriteNBitUnsignedInteger(1, 0); // boolean start
stream.WriteNBitUnsignedInteger(1, req.BulkChargingComplete ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // EE
EncodeOptionalElements279(stream, req);
}
else
{
stream.WriteNBitUnsignedInteger(2, 2); // ChargingComplete
stream.WriteNBitUnsignedInteger(1, 0); // boolean start
stream.WriteNBitUnsignedInteger(1, req.ChargingComplete ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // EE
EncodeOptionalElements280(stream, req);
}
}
private static void EncodeOptionalElements278(BitOutputStreamExact stream, CurrentDemandReqType req)
{
// After EVMaximumPowerLimit
if (req.BulkChargingComplete_isUsed)
{
stream.WriteNBitUnsignedInteger(1, 0); // BulkChargingComplete
stream.WriteNBitUnsignedInteger(1, 0); // boolean start
stream.WriteNBitUnsignedInteger(1, req.BulkChargingComplete ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // EE
EncodeOptionalElements279(stream, req);
}
else
{
stream.WriteNBitUnsignedInteger(1, 1); // ChargingComplete
stream.WriteNBitUnsignedInteger(1, 0); // boolean start
stream.WriteNBitUnsignedInteger(1, req.ChargingComplete ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // EE
EncodeOptionalElements280(stream, req);
}
}
private static void EncodeOptionalElements279(BitOutputStreamExact stream, CurrentDemandReqType req)
{
// After BulkChargingComplete - must have ChargingComplete
stream.WriteNBitUnsignedInteger(1, 0); // ChargingComplete
stream.WriteNBitUnsignedInteger(1, 0); // boolean start
stream.WriteNBitUnsignedInteger(1, req.ChargingComplete ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // EE
EncodeOptionalElements280(stream, req);
}
private static void EncodeOptionalElements280(BitOutputStreamExact stream, CurrentDemandReqType req)
{
// Grammar state 280: 2-bit choice for remaining optional elements
if (req.RemainingTimeToFullSoC_isUsed)
{
stream.WriteNBitUnsignedInteger(2, 0); // RemainingTimeToFullSoC
EncodePhysicalValueType(stream, req.RemainingTimeToFullSoC);
EncodeOptionalElements281(stream, req);
}
else if (req.RemainingTimeToBulkSoC_isUsed)
{
stream.WriteNBitUnsignedInteger(2, 1); // RemainingTimeToBulkSoC
EncodePhysicalValueType(stream, req.RemainingTimeToBulkSoC);
EncodeOptionalElements282(stream, req);
}
else
{
stream.WriteNBitUnsignedInteger(2, 2); // EVTargetVoltage (mandatory)
EncodePhysicalValueType(stream, req.EVTargetVoltage);
// End CurrentDemandReq
stream.WriteNBitUnsignedInteger(1, 0); // EE
}
}
private static void EncodeOptionalElements281(BitOutputStreamExact stream, CurrentDemandReqType req)
{
// Grammar state 281: 2-bit choice after RemainingTimeToFullSoC
if (req.RemainingTimeToBulkSoC_isUsed)
{
stream.WriteNBitUnsignedInteger(2, 0); // RemainingTimeToBulkSoC
EncodePhysicalValueType(stream, req.RemainingTimeToBulkSoC);
EncodeOptionalElements282(stream, req);
}
else
{
stream.WriteNBitUnsignedInteger(2, 1); // EVTargetVoltage (mandatory)
EncodePhysicalValueType(stream, req.EVTargetVoltage);
// End CurrentDemandReq
stream.WriteNBitUnsignedInteger(1, 0); // EE
}
}
private static void EncodeOptionalElements282(BitOutputStreamExact stream, CurrentDemandReqType req)
{
// Grammar state 282: Must encode EVTargetVoltage
stream.WriteNBitUnsignedInteger(1, 0); // EVTargetVoltage
EncodePhysicalValueType(stream, req.EVTargetVoltage);
// End CurrentDemandReq
stream.WriteNBitUnsignedInteger(1, 0); // EE
}
private static void EncodeDC_EVStatusType(BitOutputStreamExact stream, DC_EVStatusType status)
{
// Grammar state for DC_EVStatusType
// EVReady (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVReady)
stream.WriteNBitUnsignedInteger(1, 0); // boolean start
stream.WriteNBitUnsignedInteger(1, status.EVReady ? 1 : 0); // boolean value
stream.WriteNBitUnsignedInteger(1, 0); // EE
// EVErrorCode (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVErrorCode)
stream.WriteNBitUnsignedInteger(1, 0); // enum start
stream.WriteNBitUnsignedInteger(4, (int)status.EVErrorCode); // 4-bit enum value
stream.WriteNBitUnsignedInteger(1, 0); // EE
// EVRESSSOC (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVRESSSOC)
stream.WriteNBitUnsignedInteger(1, 0); // integer start
stream.WriteNBitUnsignedInteger(7, status.EVRESSSOC); // 7-bit value (0-100)
stream.WriteNBitUnsignedInteger(1, 0); // EE
// End DC_EVStatus
stream.WriteNBitUnsignedInteger(1, 0); // EE
}
private static void EncodePhysicalValueType(BitOutputStreamExact stream, PhysicalValueType value)
{
// Grammar state for PhysicalValueType
// Multiplier (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(Multiplier)
stream.WriteNBitUnsignedInteger(1, 0); // integer start
EncodeInteger8(stream, value.Multiplier);
stream.WriteNBitUnsignedInteger(1, 0); // EE
// Unit (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(Unit)
stream.WriteNBitUnsignedInteger(1, 0); // enum start
stream.WriteNBitUnsignedInteger(3, (int)value.Unit); // 3-bit enum
stream.WriteNBitUnsignedInteger(1, 0); // EE
// Value (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(Value)
stream.WriteNBitUnsignedInteger(1, 0); // integer start
EncodeInteger16(stream, value.Value);
stream.WriteNBitUnsignedInteger(1, 0); // EE
// End PhysicalValue
stream.WriteNBitUnsignedInteger(1, 0); // EE
}
private static void EncodeInteger8(BitOutputStreamExact stream, sbyte value)
{
if (value >= 0)
{
stream.WriteNBitUnsignedInteger(1, 0); // positive sign bit
stream.WriteUnsignedInteger((uint)value);
}
else
{
stream.WriteNBitUnsignedInteger(1, 1); // negative sign bit
stream.WriteUnsignedInteger((uint)(-(value + 1))); // magnitude
}
}
private static void EncodeInteger16(BitOutputStreamExact stream, short value)
{
if (value >= 0)
{
stream.WriteNBitUnsignedInteger(1, 0); // positive sign bit
stream.WriteUnsignedInteger((uint)value);
}
else
{
stream.WriteNBitUnsignedInteger(1, 1); // negative sign bit
stream.WriteUnsignedInteger((uint)(-(value + 1))); // magnitude
}
}
private static void WriteBytes(BitOutputStreamExact stream, byte[] bytes)
{
foreach (byte b in bytes)
{
stream.WriteNBitUnsignedInteger(8, b);
}
}
private static byte[] ConvertHexStringToBytes(string hex)
{
if (hex.Length % 2 != 0)
throw new ArgumentException("Hex string must have even length");
byte[] bytes = new byte[hex.Length / 2];
for (int i = 0; i < hex.Length; i += 2)
{
bytes[i / 2] = Convert.ToByte(hex.Substring(i, 2), 16);
}
return bytes;
}
/// <summary>
/// Encode CurrentDemandRes - exact port of C encode_iso1CurrentDemandResType
/// Grammar states 317-329 from C implementation
/// </summary>
private static void EncodeCurrentDemandResType(BitOutputStreamExact stream, CurrentDemandResType res)
{
// Grammar state 317: ResponseCode (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(ResponseCode)
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[ENUMERATION]
stream.WriteNBitUnsignedInteger(5, (int)res.ResponseCode); // 5-bit ResponseCode
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
// Grammar state 318: DC_EVSEStatus (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(DC_EVSEStatus)
EncodeDC_EVSEStatusType(stream, res.DC_EVSEStatus);
// Grammar state 319: EVSEPresentVoltage (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVSEPresentVoltage)
EncodePhysicalValueType(stream, res.EVSEPresentVoltage);
// Grammar state 320: EVSEPresentCurrent (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVSEPresentCurrent)
EncodePhysicalValueType(stream, res.EVSEPresentCurrent);
// Grammar state 321: EVSECurrentLimitAchieved (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVSECurrentLimitAchieved)
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[BOOLEAN]
stream.WriteNBitUnsignedInteger(1, res.EVSECurrentLimitAchieved ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
// Grammar state 322: EVSEVoltageLimitAchieved (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVSEVoltageLimitAchieved)
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[BOOLEAN]
stream.WriteNBitUnsignedInteger(1, res.EVSEVoltageLimitAchieved ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
// Grammar state 323: EVSEPowerLimitAchieved (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVSEPowerLimitAchieved)
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[BOOLEAN]
stream.WriteNBitUnsignedInteger(1, res.EVSEPowerLimitAchieved ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
// Grammar state 324+: Handle optional elements and mandatory EVSEID
EncodeCurrentDemandResOptionalElements(stream, res);
// End CurrentDemandRes
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
}
/// <summary>
/// Encode optional elements and mandatory EVSEID for CurrentDemandRes
/// Based on C grammar states 324-329
/// </summary>
private static void EncodeCurrentDemandResOptionalElements(BitOutputStreamExact stream, CurrentDemandResType res)
{
// Handle optional limits first, then mandatory EVSEID
bool hasOptionalLimits = res.EVSEMaximumVoltageLimit_isUsed ||
res.EVSEMaximumCurrentLimit_isUsed ||
res.EVSEMaximumPowerLimit_isUsed;
if (hasOptionalLimits)
{
// Encode optional limits
if (res.EVSEMaximumVoltageLimit_isUsed)
{
stream.WriteNBitUnsignedInteger(3, 0); // Choice 0: EVSEMaximumVoltageLimit
EncodePhysicalValueType(stream, res.EVSEMaximumVoltageLimit);
}
if (res.EVSEMaximumCurrentLimit_isUsed)
{
stream.WriteNBitUnsignedInteger(3, 1); // Choice 1: EVSEMaximumCurrentLimit
EncodePhysicalValueType(stream, res.EVSEMaximumCurrentLimit);
}
if (res.EVSEMaximumPowerLimit_isUsed)
{
stream.WriteNBitUnsignedInteger(3, 2); // Choice 2: EVSEMaximumPowerLimit
EncodePhysicalValueType(stream, res.EVSEMaximumPowerLimit);
}
}
// EVSEID is always present (choice 3)
stream.WriteNBitUnsignedInteger(3, 3); // Choice 3: EVSEID
EncodeString(stream, res.EVSEID);
// SAScheduleTupleID (8-bit, value-1)
stream.WriteNBitUnsignedInteger(8, (int)(res.SAScheduleTupleID - 1));
// Handle final optional elements (MeterInfo, ReceiptRequired)
if (res.MeterInfo_isUsed)
{
stream.WriteNBitUnsignedInteger(2, 0); // Choice 0: MeterInfo
EncodeMeterInfo(stream, res.MeterInfo);
}
if (res.ReceiptRequired_isUsed)
{
stream.WriteNBitUnsignedInteger(2, 1); // Choice 1: ReceiptRequired
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[BOOLEAN]
stream.WriteNBitUnsignedInteger(1, res.ReceiptRequired ? 1 : 0);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
}
else
{
stream.WriteNBitUnsignedInteger(2, 2); // Choice 2: END_ELEMENT (skip optional elements)
}
}
/// <summary>
/// Encode DC_EVSEStatus - exact implementation matching C version
/// </summary>
private static void EncodeDC_EVSEStatusType(BitOutputStreamExact stream, DC_EVSEStatusType status)
{
// NotificationMaxDelay (16-bit unsigned)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(NotificationMaxDelay)
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[UNSIGNED_INTEGER]
stream.WriteNBitUnsignedInteger(16, status.NotificationMaxDelay);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
// EVSENotification (2-bit enumeration)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVSENotification)
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[ENUMERATION]
stream.WriteNBitUnsignedInteger(2, (int)status.EVSENotification);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
// Optional EVSEIsolationStatus
if (status.EVSEIsolationStatus_isUsed)
{
stream.WriteNBitUnsignedInteger(2, 0); // Choice 0: EVSEIsolationStatus
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[ENUMERATION]
stream.WriteNBitUnsignedInteger(3, (int)status.EVSEIsolationStatus);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
// EVSEStatusCode after optional element
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(EVSEStatusCode)
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[ENUMERATION]
stream.WriteNBitUnsignedInteger(4, (int)status.EVSEStatusCode);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
}
else
{
stream.WriteNBitUnsignedInteger(2, 1); // Choice 1: Skip to EVSEStatusCode
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[ENUMERATION]
stream.WriteNBitUnsignedInteger(4, (int)status.EVSEStatusCode);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
}
// End DC_EVSEStatus
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
}
/// <summary>
/// Encode string with length encoding - exact match to C encode_iso1String
/// </summary>
private static void EncodeString(BitOutputStreamExact stream, string str)
{
if (string.IsNullOrEmpty(str))
{
// Empty string - just encode length 0
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS choice
stream.WriteUnsignedInteger(0); // Length 0
return;
}
// Convert string to UTF-8 bytes
byte[] stringBytes = Encoding.UTF8.GetBytes(str);
// Encode as string characters
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS choice
stream.WriteUnsignedInteger((uint)stringBytes.Length); // String length
// Write string bytes
WriteBytes(stream, stringBytes);
}
/// <summary>
/// Encode MeterInfo - exact match to C encode_iso1MeterInfoType
/// </summary>
private static void EncodeMeterInfo(BitOutputStreamExact stream, MeterInfoType meterInfo)
{
// MeterID (mandatory)
stream.WriteNBitUnsignedInteger(1, 0); // START_ELEMENT(MeterID)
EncodeString(stream, meterInfo.MeterID);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
// MeterReading (optional)
if (meterInfo.MeterReading != 0)
{
stream.WriteNBitUnsignedInteger(4, 0); // Choice 0: MeterReading
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[UNSIGNED_INTEGER]
stream.WriteUnsignedInteger((uint)meterInfo.MeterReading);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
}
// SigMeterReading (optional)
if (meterInfo.SigMeterReading != 0)
{
stream.WriteNBitUnsignedInteger(4, 1); // Choice 1: SigMeterReading
EncodeInteger8(stream, meterInfo.SigMeterReading);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
}
// MeterStatus (optional)
if (!string.IsNullOrEmpty(meterInfo.MeterStatus))
{
stream.WriteNBitUnsignedInteger(4, 2); // Choice 2: MeterStatus
EncodeString(stream, meterInfo.MeterStatus);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
}
// TMeter (optional)
if (meterInfo.TMeter != 0)
{
stream.WriteNBitUnsignedInteger(4, 3); // Choice 3: TMeter
stream.WriteNBitUnsignedInteger(1, 0); // CHARACTERS[INTEGER]
EncodeInteger64(stream, meterInfo.TMeter);
stream.WriteNBitUnsignedInteger(1, 0); // END_ELEMENT
}
// End MeterInfo
stream.WriteNBitUnsignedInteger(4, 4); // Choice 4: END_ELEMENT
}
/// <summary>
/// Encode 64-bit signed integer
/// </summary>
private static void EncodeInteger64(BitOutputStreamExact stream, long value)
{
if (value >= 0)
{
stream.WriteNBitUnsignedInteger(1, 0); // positive sign bit
stream.WriteUnsignedInteger((uint)value);
}
else
{
stream.WriteNBitUnsignedInteger(1, 1); // negative sign bit
stream.WriteUnsignedInteger((uint)(-(value + 1))); // magnitude
}
}
}
}